Synthesis, classification, and analysis of the structural, electronic and spectroscopic properties of a series of novel diphosphanes with diversified substituents.
The reactivity of an anionic phosphanylphosphinidene complex of tungsten(VI), [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P═P)]Li·3DME toward PMe3, halogenophosphines, and iodine was investigated. Reaction of the starting complex with Me3P led to formation of a new neutral phosphanylphosphinidene complex, [(2,6-i-Pr2C6H3N)2(Me3P)W(η(2)-t-Bu2P═P)]. Reactions with halogenophosphines yielded new catena-phosphorus complexes. From reaction with Ph2PCl and Ph2PBr, a complex with an anionic triphosphorus ligand t-Bu2P-P((-))-PPh2 was isolated. The main product of reaction with PhPCl2 was a tungsten(VI) complex with a pentaphosphorus ligand, t-Bu2P-P((-))-P(Ph)-P((-))-P-t-Bu2. Iodine reacted with the starting complex as an electrophile under splitting of the P-P bond in the t-Bu2P═P unit to yield [(1,2-η-t-Bu2P-P-P-t-Bu2)W(2,6-i-Pr2C6H3N)2Cl], t-Bu2PI, and phosphorus polymers. The molecular structures of the isolated products in the solid state and in solution were established by single crystal X-ray diffraction and NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.