Core-shell type stars synthesized via atom transfer radical polymerization were used for the delivery of nucleic acids. The interior of the stars consisted of hyperbranched poly(arylene oxindole), while the arms were composed of poly(N,N-dimethylaminoethyl methacrylate).The length of the star arms varied in degree of polymerization (DP) from 14 to 98. The hydrodynamic radius of the structures measured in water indicated the presence of small aggregates, while isolated stars ranging in size from 14 to 29 nm were seen in organic solvent.The phase transition temperatures of the stars in water, measured in basic conditions, were shifted to lower values with increasing DP of the arms. Stable polyplexes of stars with plasmid DNA were formed. Their size varied from 300 nm to 400 nm, depending upon the DP of arms. The zeta potential of the polyplexes was positive, which facilitated their cellular uptake. The DP of the arms influenced the transfection efficiency of HT-1080 cells, demonstrating that stars are promising candidates for synthetic gene vectors.
Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.
Star polymer nanolayers were successfully used as surfaces for fibroblast adhesion and proliferation, followed by their detachment in the form of a cell sheet, controlled by a temperature decrease.
Inactive mammalian tolloid-like 1 (tll1) and mutations detected in tolloid-like 1 (TLL1) have been linked to the lack of the heart septa formation in mice and to a similar human inborn condition called atrial-septal defect 6 (ASD6; OMIM 613087, formerly ASD II). Previously, we reported four point mutations in TLL1 found in approximately 20% of ASD6 patients. Three mutations in the coding sequence were M182L, V238A, and I629V. In this work, we present the effects of these mutations on TLL1 function. Three recombinant cDNA constructs carrying the mutations and one wild-type construct were prepared and then expressed in HT-1080 cells. Corresponding recombinant proteins were analyzed for their metalloendopeptidase activity using a native substrate, chordin. The results of these assays demonstrated that in comparison with the native TLL1, mutants cleaved chordin and procollagen I at significantly lower rates. CD analyses revealed significant structural differences between the higher order structure of wild-type and mutant variants. Moreover, biosensor-based assays of binding interactions between TLL1 variants and chordin demonstrated a significant decrease in the binding affinities of the mutated variants. The results from this work indicate that mutations detected in TLL1 of ASD6 patients altered its metalloendopeptidase activity, structure, and substrate-binding properties, thereby suggesting a possible pathomechanism of ASD6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.