Scalability is a key feature of reconfigurable manufacturing systems (RMS). It enables
fast and cost-effective adaptation of their structure to sudden changes in product demand. In principle, it allows to adjust a system's production capacity to match the existing orders. However, scalability can also act as a "safety buffer" to ensure a required minimum level of productivity, even when there is a decline in the reliability of the machines that are part of the machine tool subsystem of a manufacturing system. In this article, we analysed selected functional structures of an RMS under design to see whether they could be expanded should the reliability of machine tools decrease making it impossible to achieve a defined level of productivity. We also investigated the impact of the expansion of the system on its reliability. To identify bottlenecks in the manufacturing process, we ran computer simulations in which the course of the manufacturing process
was modelled and simulated for 2-, 3-, 4- and 5-stage RMS structures using Tecnomatix
Plant Simulation software.
Production scheduling is attracting considerable scientific interest. Effective scheduling of production jobs is a critical element of smooth organization of the work in an enterprise and, therefore, a key issue in production. The investigations focus on improving job scheduling effectiveness and methodology. Due to simplifying assumptions, most of the current solutions are not fit for industrial applications. Disruptions are inherent elements of the production process and yet, for reasons of simplicity, they tend to be rarely considered in the current scheduling models. This work presents the framework of a predictive job scheduling technique for application in the job-shop environment under the machine failure constraint. The prediction methods implemented in our work examine the nature of the machine failure uncertainty factor. The first section of this paper presents robust scheduling of production processes and reviews current solutions in the field of technological machine failure analysis. Next, elements of the Markov processes theory and ARIMA (auto-regressive integrated moving average) models are introduced to describe the parameters of machine failures. The effectiveness of our solutions is verified against real production data. The data derived from the strategic machine failure prediction model, employed at the preliminary stage, serve to develop the robust schedules using selected dispatching rules. The key stage of the verification process concerns the simulation testing that allows us to assess the execution of the production schedules obtained from the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.