The new general theory dedicated to the stability for LTI MIMO, in particular nonsquare, fractional-order systems described by the Grünwald–Letnikov discrete-time state–space domain is presented in this paper. Such systems under inverse model control, principally MV/perfect control, represent a real research challenge due to an infinite number of solutions to the underlying inverse problem for nonsquare matrices. Therefore, the paper presents a new algorithm for fractional-order perfect control with corresponding stability formula involving recently given H- and σ -inverse of nonsquare matrices, up to now applied solely to the integer-order plants. On such foundation a new set of stability-related tools is introduced, among them the key role played by so-called control zeros. Control zeros constitute an extension of transmission zeros for nonsquare fractional-order LTI MIMO systems under inverse model control. Based on the sets of stable control zeros a minimum-phase behavior is specified because of the stability of newly defined perfect control law described in the non-integer-order framework. The whole theory is complemented by pole-free fractional-order perfect control paradigm, a special case of fractional-order perfect control strategy. A significant number of simulation examples confirm the correctness and research potential proposed in the paper methodology.
The paper presents results of application of various right inverses to fractional-order discrete-time perfect control in terms of improving its stability and robustness. For that reason the newly introduced σ-inverse and H-inverse are applied finally to obtain the mentioned above control strategy strictly dedicated to LTI MIMO nonsquare systems described by state-space framework. It is highlighted that parameter σ-inverse and H-inverse with different so called 'degrees of freedom' outperform the typical minimum-norm right T-inverse. Moreover, this new approach deals with the same class of problems concerning integer-order systems. The simulation studies performed in Matlab/Simulink environment confirm high potential of proposed here method.
Abstract. In this paper the new methods concerning the energy-based minimization of the perfect control inputs is presented. For that reason the multivariable integer-and fractional-order models are applied which can be used for describing a various real world processes. Up to now, the classical approaches have been used in forms of minimum-norm/least squares inverses. Notwithstanding, the above-mentioned tool do not guarantee the optimal control corresponding to optimal input energy. Therefore the new class of inversebased methods has been introduced, in particular the new σ-and H-inverse of nonsquare parameter and polynomial matrices. Thus a proposed solution remarkably outperforms the typical ones in systems where the control runs can be understood in terms of different physical quantities, for example heat and mass transfer, electricity etc. A simulation study performed in Matlab/Simulink environment confirms the big potential of the new energy-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.