Summary
A three‐level M‐quantile model for small area estimation is proposed. The methodology represents an efficient alternative to prediction by using a three‐level linear mixed model in the presence of outliers and it is based on an extension of M‐quantile regression. A modified method of the traditional M‐quantile (two‐level) approach for poverty estimation is also proposed. In addition, an estimator of the mean‐squared prediction error is described, which is based on a bootstrap procedure. The methodology proposed, as well as the three‐level empirical best predictor, are applied to Polish European Union Survey on Income and Living Conditions and census data to estimate poverty at local administrative unit 1 level in Poland, i.e. the level for which the Central Statistical Office of Poland has not published any official estimates to date.
Flow cytometry technique (FC) is a standard diagnostic tool for diagnostics of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) assessing the immunophenotype of blast cells. BCP-ALL is often associated with underlying genetic aberrations, that have evidenced prognostic significance and can impact the disease outcome. Since the determination of patient prognosis is already important at the initial phase of BCP-ALL diagnostics, we aimed to reveal specific genetic aberrations by finding specific multiple antigen expression patterns with FC immunophenotyping. The FC immunophenotype data were analysed using machine learning methods (gradient boosting, decision trees, classification rules). The obtained results were verified with the use of repeated cross-validation. The t(12;21)/ETV6-RUNX1 aberration occurs more often when blasts present high expression of CD10, CD38, low CD34, CD45 and specific low expression of CD81. The t(v;11q23)/KMT2A is associated with positive NG2 expression and low CD10, CD34, TdT and CD24. Hyperdiploidy is associated with CD123, CD66c and CD34 expression on blast cells. In turn, high expression of CD81, low expression of CD45, CD22 and lack of CD123 and NG2 indicates that none of the studied aberrations is present. Detecting aberrations in pediatric BCP-ALL, based on the expression of multiple markers, can be done with decent efficiency.
The European Survey on Income and Living Conditions (EU-SILC) is the basic source of information published by CSO (the Central Statistical Office of Poland) about the relative poverty indicator, both for the country as a whole and at the regional level (NUTS 1). Estimates at lower levels of the territorial division than regions (NUTS 1) or provinces (NUTS 2, also called 'voivodships') have not been published so far. These estimates can be calculated by means of indirect estimation methods, which rely on information from outside the subpopulation of interest, which usually increases estimation precision. The main aim of this paper is to show results of estimation of the poverty indicator at a lower level of spatial aggregation than the one used so far, that is at the level of subregions in Poland (NUTS 3) using the small area estimation methodology (SAE), i.e. a model-based technique -the EBLUP estimator based on the Fay-Herriot model. By optimally choosing covariates derived from sources unaffected by random errors we can obtain results with adequate precision. A territorial analysis of the scope of poverty in Poland at NUTS 3 level will be also presented in detail 4 . The article extends the approach presented by Wawrowski (2014).
Counteracting poverty is one of the objectives of the European Commission clearly emphasized in the Europe 2020 strategy. Conducting appropriate social policy requires knowledge of the extent of this phenomenon. Such information is provided through surveys on living conditions conducted by, among others, the Central Statistical Office (CSO). Nevertheless, the sample size in these surveys allows for a precise estimation of poverty rate only at a very general level - the whole country and regions. Small sample size at the lower level of spatial aggregation results in a large variance of obtained estimates and hence lower reliability. To obtain information in sparsely represented territorial sections, methods of small area estimation are used. Through using the information from other sources, such as censuses and administrative registers, it is possible to estimate distribution parameters with smaller variance than in the case of direct estimation.
This paper attempts to estimate the poverty rate at LAU 1 level of Poland. This estimation will be possible through the use of data from different sources describing the living conditions of households and the use of the Fay-Herriot model with spatial correlation. As a result, estimates for previously unpublished levels of aggregation will be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.