Ammonia is a promising alternative fuel that can replace current fossil fuels. Hydrogen carrier, zero carbon base emissions, liquid unlike hydrogen, and can be produced using renewable resources, making ammonia a future green fuel for the internal combustion engine. This study aims to show the procedure of utilizing ammonia as a primary fuel with biodiesel in a dual-fuel mode. Hence, a single-cylinder diesel engine was retrofitted to inject ammonia into the intake manifold, and then a pilot dose of biodiesel is sprayed into the cylinder to initiate combustion of the premixed ammonia-air mixture. The effects of various ammonia mass flow rates with a constant biodiesel dose on engine performance and emissions were investigated. Furthermore, a one-dimensional model has been developed to analyze the combustion of ammonia and biodiesel. The results reveal that 69.4% of the biodiesel input energy can be replaced by ammonia but increasing the ammonia mass flow rate slightly decreases the brake thermal efficiency. Moreover, increasing the ammonia load contribution significantly reduced the emissions of CO 2 , CO, and HC but increased the
In this paper the results of the experimental study on the SI engine using biogas are presented. The experiments were carried out on a petrol engine with a low engine displacement. Typical SI engine was selected in order to evaluate the potential application of gaseous fuel (i.e. biogas). These types of engines are available on a wide scale and commonly used in automotive sector because of the low purchase price and operating costs. It is expected that after minor modifications, the engine can easily operate in low power co-generation mode. In an experimental part of this paper a complete study of the biogas combustion is presented and compared with the results for natural gas in the same unmodified petrol engine (without modification to its combustion system). The main objective was to compare and evaluate the performance, efficiency, and environmental impact of the engine under lean air/fuel mixture conditions when using alternative fuel, i.e. biogas and natural gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.