This is a repository copy of Controls on the barium isotope compositions of marine sediments.
Zinc oxide nanoparticles (ZnO NPs) are widely used in commercial products and knowledge of their environmental fate is a priority for ecological protection. Here we synthesized model ZnO NPs that were made from and thus labeled with the stable isotope (68)Zn and this enables highly sensitive and selective detection of labeled components against high natural Zn background levels. We combine high precision stable isotope measurements and novel bioimaging techniques to characterize parallel water-borne exposures of the common mudshrimp Corophium volutator to (68)ZnO NPs, bulk (68)ZnO, and soluble (68)ZnCl(2) in the presence of sediment. C. volutator is an important component of coastal ecosystems where river-borne NPs will accumulate and is used on a routine basis for toxicity assessments. Our results demonstrate that ionic Zn from ZnO NPs is bioavailable to C. volutator and that Zn uptake is active. Bioavailability appears to be governed primarily by the dissolved Zn content of the water, whereby Zn uptake occurs via the aqueous phase and/or the ingestion of sediment particles with adsorbed Zn from dissolution of ZnO particles. The high sorption capacity of sediments for Zn thus enhances the potential for trophic transfer of Zn derived from readily soluble ZnO NPs. The uncertainties of our isotopic data are too large, however, to conclusively rule out any additional direct uptake route of ZnO NPs by C. volutator.
Recent studies have introduced stable Ba isotopes (δ 138/134 Ba) as a novel tracer for ocean processes. Ba isotopes could potentially provide insight into the oceanic Ba cycle, the ocean's biological pump, watermass provenance in the deep ocean, changes in activity of hydrothermal vents, and land-sea interactions including tracing riverine inputs. Here, we show that aragonite skeletons of various colonial and solitary cold-water coral (CWC) taxa record the seawater (SW) Ba isotope composition. Thirty-six corals of eight different taxa from three oceanic regions were analysed and compared to δ 138/134 Ba measurements of co-located seawater samples. Sites were chosen to cover a wide range of temperature, salinity, Ba concentrations and Ba isotope compositions. Seawater samples at the three sites exhibit the wellestablished anti-correlation between Ba concentration and δ 138/134 Ba. Furthermore, our data set suggests that Ba/Ca values in CWCs are linearly correlated with dissolved [Ba] in ambient seawater, with an average partition coefficient of DCWC/SW = 1.8 ± 0.4 (2SD). The mean isotope fractionation of Ba between seawater and CWCs Δ 138/134 BaCWC-SW is-0.21 ± 0.08‰ (2SD), indicating that CWC aragonite preferentially incorporates the lighter isotopes. This fractionation likely does not depend on temperature or other environmental variables, suggesting that aragonite CWCs could be used to trace the Ba isotope composition in ambient seawater. Coupled [Ba] and δ 138/134 Ba analysis on fossil CWCs has the potential to provide new information about past changes in the local and global relationship between [Ba] and δ 138/134 Ba and hence about the operation of the past global oceanic Ba cycle in different climate regimes.
A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated with (207)Pb/(206)Pb, underlining the significant improvement achieved in the measurement of the minor (204)Pb isotope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.