A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.
Acoustic Lock: Position and orientation trapping of non-spherical subwavelength particles in mid-air using a single-axis acoustic levitator. Applied Physics Letters, 113(5), [054101].
The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics, and imaging applications. If the amplitude and/or phase is spatially varied across the wave front, then it is possible to project "acoustic images." When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Movement of the position of the projected hologram via phase delays that steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, while still being reconfigurable. It also allows the complex movement at a water-air interface of a "phase surfer" along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demonstrated that allows the positioning of a "phase surfer" along a one-dimensional axis. This paper opens the door for new applications with complex manipulation of ultrasound while minimizing the complexity and cost of the apparatus.
We present results of a qualitative study of the information systems used by college and university food banks and find that their inventory systems are characterized by the patchwork use of multiple units of measurementcurrencies-collected at different points in their workflow for different stakeholders. Considerations of whether to track information by item count, points, monetary value, or weight are immensely political and privilege some stakeholders over others. We contribute to an emergent body of research in computer-supported cooperative work about the ways in which the politics of measurement influences the design of organizational information systems through an explanation of the ways that these different currencies embody politics and stymie design at the most mundane level of the information system-the unit of measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.