Synchronization of driven oscillators is a key aspect of flow generation in artificial and biological filaments such as cilia. Previous theoretical and numerical studies have considered the "rotor" model of a cilium in which the filament is coarse grained into a colloidal sphere driven with a given force law along a predefined trajectory to represent the oscillating motion of the cilium. These studies pointed to the importance of two factors in the emergence of synchronization: the modulation of the driving force around the orbit and the deformability of the trajectory. In this work it is shown via experiments, supported by numerical simulations and theory, that both of these factors are important and can be combined to produce strong synchronization (within a few cycles) even in the presence of thermal noise.
In this article we consider the complete set of synchronized and phase-locked states available to pairs of hydrodynamically coupled colloidal rotors, consisting of spherical beads driven about circular paths in the same, and in opposing senses. Oscillators such as these have previously been used as coarse grained, minimal models of beating cilia. Two mechanisms are known to be important in establishing synchrony. The first involves perturbation of the driving force, and the second involves deformation of the rotor trajectory. We demonstrate that these mechanisms are of similar strength, in the regime of interest, and interact to determine observed behavior. Combining analysis and simulation with experiments performed using holographic optical tweezers, we show how varying the amplitude of the driving force perturbation leads to a transition from synchronized to phase-locked states. Analogies with biological systems are discussed, as are implications for the design of biomimetic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.