Background-Preeclampsia is characterized clinically by hypertension and proteinuria. Soluble Flt-1 (sFlt-1; also known as soluble vascular endothelial growth factor receptor-1 [VEGFR-1]) and soluble endoglin (sEng) are elevated in preeclampsia, and their administration to pregnant rats elicits preeclampsia-like symptoms. Heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO) exert protective effects against oxidative stimuli. Thus, we hypothesized that HO-1 upregulation may offer protection against preeclampsia by inhibiting sFlt-1 and sEng release. Methods and Results-Preeclamptic villous explants secreted high levels of sFlt-1 and sEng. Adenoviral overexpression of HO-1 in endothelial cells inhibited VEGF-mediated sFlt-1 release and interferon-␥-and tumor necrosis factor-␣-induced sEng release, whereas HO-1 inhibition potentiated sFlt-1 and sEng production from endothelial cells and placental villous explants. Consistent with these findings, mice lacking HO-1 produced higher levels of sFlt-1 and sEng compared with wild-type mice. Using selective ligands (VEGF-E and placental growth factor) and a receptor-specific inhibitor (SU-1498), we demonstrated that VEGF-induced sFlt-1 release was VEGFR-2 dependent. Furthermore, CO-releasing molecule-2 (CORM-2) or CO decreased sFlt-1 release and inhibited VEGFR-2 phosphorylation. Treatment of endothelial cells with statins upregulated HO-1 and inhibited the release of sFlt-1, whereas vitamins C and E had no effect. Conclusions-The present study demonstrates that the HO-1/CO pathway inhibits sFlt-1 and sEng release, providing compelling evidence for a protective role of HO-1 in pregnancy, and identifies HO-1 as a novel target for the treatment of preeclampsia. Key Words: endothelium Ⅲ endothelium-derived factors Ⅲ heme oxygenase-1 Ⅲ preeclampsia Ⅲ pregnancy Ⅲ statins Ⅲ angiogenesis C ardiovascular disease and preeclampsia share some common risk factors, such as insulin resistance, obesity, diabetes mellitus, and inflammation. 1,2 The disruption of endothelial homeostasis and inflammation are fundamental to the initiation and progression of atherosclerosis 3 and preeclampsia. 4 Preeclampsia is a maternal systemic endothelial disease defined clinically as hypertension and proteinuria after 20 weeks' gestation that affects 3% to 8% of all pregnancies and women.5 Women with a history of preeclampsia and their offspring are at greater risk of developing cardiovascular disease later in life. 6,7 Clinical Perspective p 1797Preeclampsia involves dysregulated placental angiogenesis, 8 resulting in the release of soluble antiangiogenic factors that induce systemic endothelial dysfunction. 9 Two key antiangiogenic circulating factors that give the highest strength of association with preeclamptic outcome are soluble Flt-1 (sFlt-1) and soluble endoglin (sEng). 10 -12 Maternal serum levels of sFlt-1 are elevated 5 weeks before the clinical onset of preeclampsia. 10,13-16 sEng, a placenta-derived 65-kDa cleaved form of endoglin (also known as CD105), a coreceptor for transform...
Background & AimsLiver regeneration requires functional liver macrophages, which provide an immune barrier that is compromised after liver injury. The numbers of liver macrophages are controlled by macrophage colony-stimulating factor (CSF1). We examined the prognostic significance of the serum level of CSF1 in patients with acute liver injury and studied its effects in mice.MethodsWe measured levels of CSF1 in serum samples collected from 55 patients who underwent partial hepatectomy at the Royal Infirmary Edinburgh between December 2012 and October 2013, as well as from 78 patients with acetaminophen-induced acute liver failure admitted to the Royal Infirmary Edinburgh or the University of Kansas Medical Centre. We studied the effects of increased levels of CSF1 in uninjured mice that express wild-type CSF1 receptor or a constitutive or inducible CSF1-receptor reporter, as well as in chemokine receptor 2 (Ccr2)-/- mice; we performed fate-tracing experiments using bone marrow chimeras. We administered CSF1-Fc (fragment, crystallizable) to mice after partial hepatectomy and acetaminophen intoxication, and measured regenerative parameters and innate immunity by clearance of fluorescent microbeads and bacterial particles.ResultsSerum levels of CSF1 increased in patients undergoing liver surgery in proportion to the extent of liver resected. In patients with acetaminophen-induced acute liver failure, a low serum level of CSF1 was associated with increased mortality. In mice, administration of CSF1-Fc promoted hepatic macrophage accumulation via proliferation of resident macrophages and recruitment of monocytes. CSF1-Fc also promoted transdifferentiation of infiltrating monocytes into cells with a hepatic macrophage phenotype. CSF1-Fc increased innate immunity in mice after partial hepatectomy or acetaminophen-induced injury, with resident hepatic macrophage as the main effector cells.ConclusionsSerum CSF1 appears to be a prognostic marker for patients with acute liver injury. CSF1 might be developed as a therapeutic agent to restore innate immune function after liver injury.
Kupffer cells are the resident macrophage population of the liver and have previously been implicated in the pathogenesis of hepatic ischemia-reperfusion injury (IRI). Kupffer cells are the major site of expression of hepatic heme oxygenase-1 (HO-1), which has been shown to have anti-inflammatory actions and to protect animals and cells from oxidative injury. Kupffer cells and circulating monocytes were selectively ablated using liposomal clodronate (LC) in the CD11b DTR mouse before induction of hepatic ischemia. Kupffer cell depletion resulted in loss of HO-1 expression and increased susceptibility to hepatic IRI, whereas ablation of circulating monocytes did not affect IRI phenotype. Targeted deletion of HO-1 rendered mice highly susceptible to hepatic IRI. In vivo, HO-1 deletion resulted in pro-inflammatory Kupffer cell differentiation characterized by enhanced Ly6c and MARCO (macrophage receptor with collagenous structure) expression as well as decreased F4/80 expression, mirrored by an expansion in immature circulating monocytes. In vitro, HO-1 inhibition throughout macrophage differentiation led to increased cell numbers, and pro-inflammatory Ly6c+ CD11c- F4/80- phenotype. These data support a critical role for tissue-resident macrophages in homeostasis following ischemic injury, and a co-dependence of HO-1 expression and tissue-resident macrophage differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.