Blood glucose control, for example, in diabetes mellitus or severe illness, requires strict adherence to a protocol of food, insulin administration and exercise personalized to each patient. An artificial pancreas for automated treatment could boost quality of glucose control and patients' independence. The components required for an artificial pancreas are: i) continuous glucose monitoring (CGM), ii) smart controllers and iii) insulin pumps delivering the optimal amount of insulin. In recent years, medical devices for CGM and insulin administration have undergone rapid progression and are now commercially available. Yet, clinically available devices still require regular patients' or caregivers' attention as they operate in open-loop control with frequent user intervention. Dosage-calculating algorithms are currently being studied in intensive care patients [1] , for short overnight control to supplement conventional insulin delivery [2] , and for short periods where patients rest and follow a prescribed food regime [3] . Fully automated algorithms that can respond to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and which provide the necessary personalized control for individuals is currently beyond the state-of-the-art. Here, we review and discuss reinforcement learning algorithms, controlling insulin in a closed-loop to provide individual insulin dosing regimens that are reactive to the immediate needs of the patient.
No abstract
This paper addresses the making of security decisions, such as access-control decisions or spam filtering decisions, under uncertainty, when the benefit of doing so outweighs the need to absolutely guarantee these decisions are correct. For instance, when there are limited, costly, or failed communication channels to a policy-decision-point. Previously, local caching of decisions has been proposed, but when a correct decision is not available, either a policy-decision-point must be contacted, or a default decision used. We improve upon this model by using learned classifiers of access control decisions. These classifiers, trained on known decisions, infer decisions when an exact match has not been cached, and uses intuitive notions of utility, damage and uncertainty to determine when an inferred decision is preferred over contacting a remote PDP. Clearly there is uncertainty in the predicted decisions, introducing a degree of risk. Our solution proposes a mechanism to quantify the uncertainty of these decisions and allows administrators to bound the overall risk posture of the system. The learning component continuously refines its models based on inputs from a central policy server in cases where the risk is too high or there is too much uncertainty. We have validated our models by building a prototype system and evaluating it with requests from real access control policies. Our experiments show that over a range of system parameters, it is feasible to use machine learning methods to infer access control policies decisions. Thus our system yields several benefits, including reduced calls to the PDP, reducing latency and communication costs; increased net utility; and increased system survivability.
The various group and category memberships that we hold are at the heart of who we are. They have been shown to affect our thoughts, emotions, behavior, and social relations in a variety of social contexts, and have more recently been linked to our mental and physical well-being. Questions remain, however, over the dynamics between different group memberships and the ways in which we cognitively and emotionally acquire these. In particular, current assessment methods are missing that can be applied to naturally occurring data, such as online interactions, to better understand the dynamics and impact of group memberships in naturalistic settings. To provide researchers with a method for assessing specific group memberships of interest, we have developed ASIA (Automated Social Identity Assessment), an analytical protocol that uses linguistic style indicators in text to infer which group membership is salient in a given moment, accompanied by an in-depth open-source Jupyter Notebook tutorial (https://github.com/Identity-lab/Tutorial-on-salient-social-Identity-detection-model). Here, we first discuss the challenges in the study of salient group memberships, and how ASIA can address some of these. We then demonstrate how our analytical protocol can be used to create a method for assessing which of two specific group memberships—parents and feminists—is salient using online forum data, and how the quality (validity) of the measurement and its interpretation can be tested using two further corpora as well as an experimental study. We conclude by discussing future developments in the field.
Early detection of cognitive decline is important for timely intervention and treatment strategies to prevent further deterioration or development of more severe cognitive impairment, as well as identify at risk individuals for research. In this paper, we explore the feasibility of using data collected from built-in sensors of mobile phone and gameplay performance in mobile-game-based cognitive assessments. Twenty-two healthy participants took part in the two-session experiment where they were asked to take a series of standard cognitive assessments followed by playing three popular mobile games in which user-game interaction data were passively collected. The results from bivariate analysis reveal correlations between our proposed features and scores obtained from paper-based cognitive assessments. Our results show that touch gestural interaction and device motion patterns can be used as supplementary features on mobile game-based cognitive measurement. This study provides initial evidence that game related metrics on existing off-the-shelf games have potential to be used as proxies for conventional cognitive measures, specifically for visuospatial function, visual search capability, mental flexibility, memory and attention. CCS Concepts: • Human-centered computing → Touch screens; Haptic devices; Ubiquitous and mobile computing design and evaluation methods; • Applied computing → Health informatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.