Fuels derived from biomass feedstocks are a particularly attractive energy resource pathway given their inherent advantages of energy security via domestic fuel crop production and their renewable status. However, there are numerous questions regarding how to optimally produce, distribute, and utilize biofuels such that they are economically, energetically, and environmentally sustainable. Comparative analyses of two conceptual 2000 tons/day thermochemical-based biorefineries are performed to explore the effects of emerging technologies on process efficiencies. System models of the biorefineries, created using ASPEN Plus®, inchide all primary process steps required to convert a biomass feedstock into hydrogen, including gasification, gas cleanup and conditioning, hydrogen purification, and thermal integration. The biorefinery concepts studied herein are representative of "near-term" (approximately 2015) and "future" (approximately 2025) plants. The near-term plant design serve,9 as a baseline concept and incorporates currently available commercial technologies for all nongasifier processes, Gasifier technology employed in these analyses is centered on directly heated, oxygen-blown, fiuidizedbed systems that are pressurized to nearly 25 bars. The future plant design employs emerging gas cleaning and conditioning technologies for both tar and sulfur removal unit operations. A 25% increase in electric power production is observed for the future case over the baseline configuration due to the improved thermal integration while realizing an overall plant efficiency improvement of 2 percentage points. Exergy analysis reveals that the largest inefficiencies are associated with the (i) gasification, (ii) steam and power production, and (Hi) gas cleanup and purification processes. Additional suggestions for improvements in the biorefinery plant for hydrogen production are given.
Fuels derived from biomass feedstocks are a particularly attractive energy resource pathway given their inherent advantages of energy security via domestic fuel crop production and their renewable status. However, there are numerous questions regarding how to optimally produce, distribute, and utilize biofuels such that they are economically, energetically, and environmentally sustainable. Comparative analyses of two conceptual 2000 tonne/day thermochemical-based biorefineries are performed to explore the effects of emerging technologies on process efficiencies. System models of the biorefineries, created using ASPEN Plus®, include all primary process steps required to convert a biomass feedstock into hydrogen, including gasification, gas cleanup and conditioning, hydrogen purification, and thermal integration. The biorefinery concepts studied herein are representative of ‘near-term’ (ca. 2015) and ‘future’ (ca. 2025) plants. The ‘near-term’ plant design serves as a baseline concept and incorporates currently available commercial technologies for all non-gasifier processes. The ‘future’ plant design employs emerging gas cleaning and conditioning technologies for both tar and sulfur removal unit operations. Gasifier technology employed in these analyses is centered on directly-heated, oxygen-blown, fluidized-bed systems. Selection of the gasifier pressurizing agent (CO2 v. N2) is found to be a key factor in achieving high hydrogen production efficiency. Efficiency gains of 8-percentage points appear possible with CO2 capture using Selexol or Rectisol-type processes. A 25% increase in electric power production is observed for the ‘future’ case over the baseline configuration due to improved thermal integration while realizing an overall plant efficiency improvement of 2 percentage points. Exergy analysis reveals the largest inefficiencies are associated with the (i) gasification, (ii) steam and power production, and (iii) gas cleanup and purification processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.