The “Warburg effect,” also termed aerobic glycolysis, describes the increased reliance of cancer cells on glycolysis for ATP production, even in the presence of oxygen. Consequently, there is continued interest in inhibitors of glycolysis as cancer therapeutics. One example is dichloroacetate (DCA), a pyruvate mimetic that stimulates oxidative phosphorylation through inhibition of pyruvate dehydrogenase kinase. In this study, the mechanistic basis for DCA anti‐cancer activity was re‐evaluated in vitro using biochemical, cellular and proteomic approaches. Results demonstrated that DCA is relatively inactive (IC50 ≥ 17 mM, 48 hr), induces apoptosis only at high concentrations (≥25 mM, 48 hr) and is not cancer cell selective. Subsequent 2D‐PAGE proteomic analysis confirmed DCA‐induced growth suppression without apoptosis induction. Furthermore, DCA depolarizes mitochondria and promotes reactive oxygen species (ROS) generation in all cell types. However, DCA was found to have selective activity against rho(0) cells [mitochondrial DNA (mtDNA) deficient] and to synergize with 2‐deoxyglucose in complex IV deficient HCT116 p53(−/−) cells. DCA also synergized in vitro with cisplatin and topotecan, two antineoplastic agents known to damage mitochondrial DNA. These data suggest that in cells “hardwired” to selectively utilize glycolysis for ATP generation (e.g., through mtDNA mutations), the ability of DCA to force oxidative phosphorylation confers selective toxicity. In conclusion, although we provide a mechanism distinct from that reported previously, the ability of DCA to target cell lines with defects in the electron transport chain and to synergize with existing chemotherapeutics supports further preclinical development.
These data provide the first evidence that NSC80467 and YM155 are DNA damaging agents where suppression of survivin is a secondary event, likely a consequence of transcriptional repression.
BackgroundAlveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.MethodsFor seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.ResultsAnalysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).ConclusionResults from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.
Immunological effector cells must be sensitive to the antigens or environmental signals that indicate that a pathogen is present. To this end, a group of cells known as the professional antigen-presenting cells have the ability to educate T, B and NK cells as to the fingerprints of specific infections. The most adept of these cells are a closely related family termed dendritic cells (DC). A subset of these act as peripheral sentinels, specializing in the uptake, processing and presentation of antigenic material combined with an ability to detect a wide variety of 'danger' signals. These 'danger' or activation signals induce profound changes in dendritic cell physiology, facilitating the efficient stimulation of both adaptive and innate immunity. In the present review, a number of recent advances in the understanding of DC biology are discussed. These advances offer insights into the pathogenesis of a wide variety of diseases and point towards future strategies for immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.