We present a system for inductive program synthesis called DreamCoder, which inputs a corpus of synthesis problems each specified by one or a few examples, and automatically derives a library of program components and a neural search policy that can be used to efficiently solve other similar synthesis problems. The library and search policy bootstrap each other iteratively through a variant of łwake-sleepž approximate Bayesian learning. A new refactoring algorithm based on E-graph matching identifies common sub-components across synthesized programs, building a progressively deepening library of abstractions capturing the structure of the input domain. We evaluate on eight domains including classic program synthesis areas and AI tasks such as planning, inverse graphics, and equation discovery. We show that jointly learning the library and neural search policy leads to solving more problems, and solving them more quickly. CCS Concepts:• Software and its engineering → Software notations and tools; • Computing methodologies → Machine learning.
Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languagessystems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A "wake-sleep" learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton's and Coulomb's laws. Concepts are built compositionally from those learned earlier, yielding multilayered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience.
No abstract
From sparse descriptions of events, observers can make systematic and nuanced predictions of what emotions the people involved will experience. We propose a formal model of emotion prediction in the context of a public high-stakes social dilemma. This model uses inverse planning to infer a person’s beliefs and preferences, including social preferences for equity and for maintaining a good reputation. The model then combines these inferred mental contents with the event to compute ‘appraisals’: whether the situation conformed to the expectations and fulfilled the preferences. We learn functions mapping computed appraisals to emotion labels, allowing the model to match human observers’ quantitative predictions of 20 emotions, including joy, relief, guilt and envy. Model comparison indicates that inferred monetary preferences are not sufficient to explain observers’ emotion predictions; inferred social preferences are factored into predictions for nearly every emotion. Human observers and the model both use minimal individualizing information to adjust predictions of how different people will respond to the same event. Thus, our framework integrates inverse planning, event appraisals and emotion concepts in a single computational model to reverse-engineer people’s intuitive theory of emotions. This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’.
Much concern has been raised about the power of political microtargeting to sway voters’ opinions, influence elections, and undermine democracy. Yet little research has directly estimated the persuasive advantage of microtargeting over alternative campaign strategies. Here, we do so using two studies focused on U.S. policy issue advertising. To implement a microtargeting strategy, we combined machine learning with message pretesting to determine which advertisements to show to which individuals to maximize persuasive impact. Using survey experiments, we then compared the performance of this microtargeting strategy against two other messaging strategies. Overall, we estimate that our microtargeting strategy outperformed these strategies by an average of 70% or more in a context where all of the messages aimed to influence the same policy attitude (Study 1). Notably, however, we found no evidence that targeting messages by more than one covariate yielded additional persuasive gains, and the performance advantage of microtargeting was primarily visible for one of the two policy issues under study. Moreover, when microtargeting was used instead to identify which policy attitudes to target with messaging (Study 2), its advantage was more limited. Taken together, these results suggest that the use of microtargeting—combining message pretesting with machine learning—can potentially increase campaigns’ persuasive influence and may not require the collection of vast amounts of personal data to uncover complex interactions between audience characteristics and political messaging. However, the extent to which this approach confers a persuasive advantage over alternative strategies likely depends heavily on context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.