We aim to understand inherent reasons for lower bounds for QBF proof systems and revisit and compare two previous approaches in this direction. The first of these relates size lower bounds for strong QBF Frege systems to circuit lower bounds via
strategy extraction
(Beyersdorff and Pich, LICS’16). Here, we show a refined version of strategy extraction and thereby for any QBF proof system obtain a trichotomy for hardness: (1) via circuit lower bounds, (2) via propositional Resolution lower bounds, or (3) “genuine” QBF lower bounds. The second approach tries to explain QBF lower bounds through
quantifier alternations
in a system called relaxing QU-Res (Chen, ACM TOCT 2017). We prove a strong lower bound for relaxing QU-Res, which at the same time exhibits significant shortcomings of that model. Prompted by this, we introduce a hierarchy of new systems that improve Chen’s model and prove a strict separation for the complexity of proofs in this hierarchy. We show that lower bounds in our new model correspond to the trichotomy obtained via strategy extraction.
As a natural extension of the SAT problem, an array of proof systems for quantified Boolean formulas (QBF) have been proposed, many of which extend a propositional proof system to handle universal quantification. By formalising the construction of the QBF proof system obtained from a propositional proof system by adding universal reduction (Beyersdorff, Bonacina & Chew, ITCS '16), we present a new technique for proving proof-size lower bounds in these systems. The technique relies only on two semantic measures: the cost of a QBF, and the capacity of a proof. By examining the capacity of proofs in several QBF systems, we are able to use the technique to obtain lower bounds based on cost alone.As applications of the technique, we first prove exponential lower bounds for a new family of simple QBFs representing equality. The main application is in proving exponential lower bounds with high probability for a class of randomly generated QBFs, the first 'genuine' lower bounds of this kind, which apply to the QBF analogues of resolution, Cutting Planes, and Polynomial Calculus. Finally, we employ the technique to give a simple proof of hardness for the prominent formulas of Kleine Büning, Karpinski and Flögel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.