Several ultraviolet (UV) filters exhibit estrogenic, some also anti-androgenic activity. They are present in waste water treatment plants, surface waters and biosphere including human milk, suggesting potential exposure during development. Developmental toxicity was studied in rats for the UV filters 4-methylbenzylidene camphor (4-MBC, 0.7, 7, 24, 47 mg/kg/day) and 3-benzylidene camphor (3-BC, 0.07, 0.24, 0.7, 2.4, 7 mg/kg/day) administered in chow to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. Neonates exhibited enhanced prostate growth after 4-MBC and altered uterine gene expression after both chemicals. 4-MBC and 3-BC delayed male puberty and affected reproductive organ weights of adult offspring. Effects on the thyroid axis were also noted. Expression and oestrogen sensitivity of oestrogen-regulated genes and nuclear receptor coregulator levels were altered at mRNA and protein levels in adult uterus, prostate and brain regions involved in gonadal control and sexual behaviour. Female sexual behaviour was impaired by both filters; 3-benzylidene camphor caused irregular cycles. Classical endpoints exhibited lowest observed adverse effect levels (LOAELs) and no observed adverse effect levels (NOAELs) of 7/0.7 mg/kg for 4-MBC and 0.24/0.07 mg/kg for 3-BC. Molecular endpoints were affected by the lowest doses studied. Our data indicate that the potential risk posed by endocrine active UV filters warrants further investigations.
Background and objectivesExposure to environmental endocrine disruptors is a potential risk factor for humans. Many of these chemicals have been shown to exhibit disruption of normal cellular and developmental processes in animal models. Ultraviolet (UV) filters used as sunscreens in cosmetics have previously been shown to exhibit estrogenic activity in in vitro and in vivo assays. We examined the effects of two UV filters, 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC), in the developing prostate of the fetal rat.MethodsPregnant Long Evans rats were fed diets containing doses of 4-MBC and 3-BC that resulted in average daily intakes of these chemicals corresponding to the lowest observed adverse effects level (LOAEL) and the no observed adverse effects level (NOAEL) doses in prior developmental toxicity studies. Using digital photographs of serial sections from postnatal day 1 animals, we identified, contoured, and aligned the epithelial ducts from specific regions of the developing prostate, plus the accessory sex glands and calculated the total volume for each region from three-dimensional, surface-rendered models.ResultsFetal exposure to 4-MBC (7.0 mg/kg body weight/day) resulted in a significant increase (p < 0.05) in tissue volume in the prostate and accessory sex glands. Treated males exhibited a 62% increase in the number of ducts in the caudal dorsal prostate. Increased distal branching morphogenesis appears to be a consequence of exposure in the ventral region, resulting in a 106% increase in ductal volume.Conclusions4-MBC exposure during development of the male reproductive accessory sex glands exhibited classical growth effects associated with estrogenic endocrine disruptors. The different regional responses suggest that the two developmental processes of ductal outgrowth and branching morphogenesis are affected independently by exposure to the environmental chemicals.
For over a half century the ACI (August × Copenhagen) rat has been a primary model for studying renal agenesis and ipsilateral hypoplasia (IHP) of the Wolffian derived structures (WDS). Because the ACI rat is also used as a model for prostate research it is important to examine the relationship of IHP and urogenital sinus development. The prostate is dependent on androgens for proper growth and differentiation. Alteration in androgen production and/or delivery to the urogenital sinus has the potential to perturbate normal development. In this study we investigate whether the ipsilateral loss of the WDS is associated with altered prostate development. Digital images of serial sectioned fetal ACI rat urogenital sinus (UGS) were used to create 3-dimensional surface-rendered models of the developing prostate, seminal vesicle, vas deferens and utricle on gestational day 21. The number and volume of prostate ducts developing from the UGS were calculated from the 3-D model data. Animals exhibiting IHP had a significant decrease in total fetal prostate volume (40%; p<0.005) with significant regional specific differences when compared to normal male ACI rats. Anatomical and histological differences in the utricle, abnormal histology of the ipsilateral testes, and a truncation of the ipsilateral Wolffian ductal mesenchyme were also seen in the animals with IHP. Additional research is needed to further understand the mechanisms and consequences of IHP on prostate growth and development. Alterations to normal prenatal development of the male accessory sex organs can have important consequences for the growth and morphology of the adult gland.
For over a half century the ACI (August × Copenhagen) rat has been a primary model for studying renal agenesis and ipsilateral hypoplasia (IHP) of the Wolffian derived structures (WDS). Because the ACI rat is also used as a model for prostate research it is important to examine the relationship of IHP and urogenital sinus development. The prostate is dependent on androgens for proper growth and differentiation. Alteration in androgen production and/or delivery to the urogenital sinus has the potential to perturbate normal development. In this study we investigate whether the ipsilateral loss of the WDS is associated with altered prostate development. Digital images of serial sectioned fetal ACI rat urogenital sinus (UGS) were used to create 3-dimensional surfacerendered models of the developing prostate, seminal vesicle, vas deferens and utricle on gestational day 21. The number and volume of prostate ducts developing from the UGS were calculated from the 3-D model data. Animals exhibiting IHP had a significant decrease in total fetal prostate volume (40%; p<0.005) with significant regional specific differences when compared to normal male ACI rats. Anatomical and histological differences in the utricle, abnormal histology of the ipsilateral testes, and a truncation of the ipsilateral Wolffian ductal mesenchyme were also seen in the animals with IHP. Additional research is needed to further understand the mechanisms and consequences of IHP on prostate growth and development. Alterations to normal prenatal development of the male accessory sex organs can have important consequences for the growth and morphology of the adult gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.