The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG polysaccharide.
Resistance against currently used antitubercular therapeutics increasingly undermines efforts to contain the worldwide tuberculosis (TB) epidemic. Recently, benzothiazinone (BTZ) inhibitors have shown nanomolar potency against both drug-susceptible and multidrug-resistant strains of the tubercle bacillus. However, their proposed mode of action is lacking structural evidence. We report here the crystal structure of the BTZ target, FAD-containing oxidoreductase Mycobacterium tuberculosis DprE1, which is essential for viability. Different crystal forms of ligand-free DprE1 reveal considerable levels of structural flexibility of two surface loops that seem to govern accessibility of the active site. Structures of complexes with the BTZ-derived nitroso derivative CT325 reveal the mode of inhibitor binding, which includes a covalent link to conserved Cys387, and reveal a trifluoromethyl group as a second key determinant of interaction with the enzyme. Surprisingly, we find that a noncovalent complex was formed between DprE1 and CT319, which is structurally identical to CT325 except for an inert nitro group replacing the reactive nitroso group. This demonstrates that binding of BTZ-class inhibitors to DprE1 is not strictly dependent on formation of the covalent link to Cys387. On the basis of the structural and activity data, we propose that the complex of DrpE1 bound to CT325 is a representative of the BTZ-target complex. These results mark a significant step forward in the characterization of a key TB drug target.mycobacterial cell wall | X-ray crystallography | multi drug resistance | arabinan | decaprenylphosphoryl-D-arabinose
The cell wall mycolyl-arabinogalactan-peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis, and is the target of several anti-tubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. Following a detailed bioinformatics analysis of genes surrounding the conserved emb locus, we present the identification and characterization of a novel arabinofuranosyltransferase AftA (Rv3792). The enzyme catalyzes the addition of the first key arabinofuranosyl residue from the sugar donor -D-arabinofuranosyl-1-monophosphoryldecaprenol to the galactan domain of the cell wall, thus "priming" the galactan for further elaboration by the arabinofuranosyltransferases. Because aftA is an essential gene in M. tuberculosis, we deleted its orthologue in Corynebacterium glutamicum to produce a slow growing but viable mutant. Analysis of its cell wall revealed the complete absence of arabinose resulting in a truncated cell wall structure possessing only a galactan core with a concomitant loss of cell wall-bound mycolates. Complementation of the mutant was fully restored to the wild type phenotype by Cg-aftA. In addition, by developing an in vitro assay using recombinant Escherichia coli expressing Mt-aftA and use of cell wall galactan as an acceptor, we demonstrated the transfer of arabinose from -D-arabinofuranosyl-1-monophosphoryldecaprenol to galactan, and unlike the Mt-Emb proteins, Mt-AftA was not inhibited by ethambutol. This newly discovered glycosyltransferase represents an attractive drug target for further exploitation by chemotherapeutic intervention.The Corynebacterianeae represent a distinct group within Grampositive bacteria, with prominent members being the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae, and Corynebacterium diphtheriae (1). In addition, nonpathogenic bacteria belonging to this taxon, such as Corynebacterium glutamicum and Corynebacterium efficiens, are used in the industrial production of amino acids (2). A common feature of the Corynebacterianeae is that they possess an unusual cell wall architecture (3-5). The cell wall is dominated by an essential heteropolysaccharide, arabinogalactan (AG), 5 linked to both peptidoglycan and mycolic acids, forming the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex (3-6). The biosynthesis of the arabinan domain of AG, which is made up of ␣135-, ␣133-, and 132-glycosyl linkages, results from the sequential addition of arabinofuranose (Araf ) residues from the sugar donor -D-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) (7-9), by a set of unique arabinofuranosyltransferases termed the Emb proteins, of which three paralogues exist in Mycobacterium avium (10) and M. tuberculosis (11). The anti-tuberculosis drug ethambutol (EMB) specifically inhibits AG biosynthesis (12), and the molecular target of EMB occupies the embCAB locus in M. tuberculosis (11). Upon individual disruption of embC, embA, and embB in My...
Arabinofuranosyltransferase enzymes, such as EmbA, EmbB, and AftA, play pivotal roles in the biosynthesis of arabinogalactan, and the anti-tuberculosis agent ethambutol (EMB) targets arabinogalactan biosynthesis through inhibition of Mt-EmbA and Mt-EmbB. Herein, we describe the identification and characterization of a novel arabinofuranosyltransferase, now termed AftB (Rv3805c), which is essential in Mycobacterium tuberculosis. Deletion of its orthologue NCgl2780 in the closely related species Corynebacterium glutamicum resulted in a viable mutant. Analysis of the cell wall-associated lipids from the deletion mutant revealed a decreased abundance of cell wall-bound mycolic acids, consistent with a partial loss of mycolylation sites. Subsequent glycosyl linkage analysis of arabinogalactan also revealed the complete absence of terminal (1 3 2)-linked arabinofuranosyl residues. The deletion mutant biochemical phenotype was fully complemented by either Mt-AftB or CgAftB, but not with muteins of Mt-AftB, where the two adjacent aspartic acid residues, which have been suggested to be involved in glycosyltransferase activity, were replaced by alanine. In addition, the use of C. glutamicum and C. glutamicum⌬aftB in an in vitro assay utilizing the sugar donor -D-arabinofuranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor ␣-D-Araf-(1 3 5)-␣-D-Araf-O-C 8 as a substrate confirmed AftB as a terminal (1 3 2) arabinofuranosyltransferase, which was also insensitive to EMB. Altogether, these studies have shed further light on the complexities of Corynebacterianeae cell wall biosynthesis, and Mt-AftB represents a potential new drug target.
The mycobacterial bacillus is encompassed by a remarkably elaborate cell wall structure. The mycolyl-arabinogalactan-peptidoglycan (mAGP) complex is essential for the viability of Mycobacterium tuberculosis and maintains a robust basal structure supporting the upper "myco-membrane." M. tuberculosis peptidoglycan, although appearing to be unexceptional at first glance, contains a number of unique molecular subtleties that become particularly important as the TB-bacilli enters into nonreplicative growth during dormancy. Arabinogalactan, a highly branched polysaccharide, serves to connect peptidoglycan with the outer mycolic acid layer, and a variety of unique glycolsyltransferases are used for its assembly. In this review, we shall explore the microbial chemistry of this unique heteropolysacchride, examine the molecular genetics that underpins its fabrication, and discuss how the essential biosynthetic process might be exploited for the development of future anti-TB chemotherapies. THE MYCOBACTERIAL CELL WALL-PEPTIDOGLYCAN AND ARABINOGALACTAN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.