Conservation of long‐distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre‐ and post‐breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi‐species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter‐ and intra‐specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi‐species annual cycle habitat linkages, and highlight the value of Long‐tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams.
Studies of the effects of transmitters on wildlife often focus on survival. However, sublethal behavioral changes resulting from radio-marking have the potential to affect inferences from telemetry data and may vary based on individual and environmental characteristics. We used a long-term, multi-species tracking study of sea ducks to assess behavioral patterns at multiple temporal scales following implantation of intracoelomic satellite transmitters. We applied state-space models to assess short-term behavioral patterns in 476 individuals with implanted satellite transmitters, as well as comparing breeding site attendance and migratory phenology across multiple years after capture. In the short term, our results suggest an increase in dispersive behavior immediately following capture and transmitter implantation; however, behavior returned to seasonally average patterns within ~5 days after release. Over multiple years, we found that breeding site attendance by both males and females was depressed during the first breeding season after radio-marking relative to subsequent years, with larger relative decreases in breeding site attendance among males than females. We also found that spring and breeding migrations occurred later in the first year after radio-marking than in subsequent years. Across all behavioral effects, the severity of behavioral change often varied by species, sex, age, and capture season. We conclude that, although individuals appear to adjust relatively quickly (i.e. within 1 week) to implanted satellite transmitters, changes in breeding phenology may occur over the longer term and should be considered when analyzing and reporting telemetry data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.