Endogenous cannabinoid signaling is vital for important brain functions and can be modified pharmacologically to treat pain, epilepsy, and posttraumatic stress disorder. Endocannabinoid mediated changes to excitability are predominantly attributed to 2-arachidonoylglycerol at synapses. Here we identify a pathway in the neocortex by which anandamide, the other major endocannabinoid, powerfully inhibits sodium conductances in the soma resulting in a loss of neuronal excitability. This pathway is mediated by the cannabinoid receptor, and its activation results in a decrease of recurrent action potential generation. The synthetic cannabinoid, Win-55, also inhibits VGSC currents indicating this pathway is positioned to mediate the actions of exogenous cannabinoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.