Long celebrated for its spectacular landscapes and strikingly high levels of endemic biodiversity, the Philippines has been studied intensively by biogeographers for two centuries. Concentration of so many endemic land vertebrates into a small area and shared patterns of distribution in many unrelated forms has inspired a search for common mechanisms of production, partitioning, and maintenance of life in the archipelago. In this review, we (a) characterize an ongoing renaissance of species discovery, (b) discuss the changing way biogeographers conceive of the archipelago, (c) review the role molecular phylogenetic studies play in understanding the evolutionary history of Philippine vertebrates, and (d) describe how a 25-year Pleistocene island connectivity paradigm continues to provide some explanatory power, but has been augmented by increased understanding of the archipelago's geological history and ecological gradients. Finally, we (e) review new insights provided by studies of adaptive versus nonadaptive radiation and phylogenetic perspectives on community ecology. 412 Brown et al.
Aim We examine the genetic diversity within the lizard genus Gekko in the Philippine islands to understand the role of geography and geological history in shaping species diversity in this group. We test multiple biogeographical hypotheses of species relationships, including the recently proposed Palawan Ark Hypothesis. Location Southeast Asia and the Philippines. Methods Samples of all island endemic and widespread Philippine Gekko species were collected and sequenced for one mitochondrial gene (NADH dehydrogenase subunit 2) and one nuclear gene (phosducin). We used maximum likelihood and Bayesian phylogenetic methods to derive the phylogeny. Divergence time analyses were used to estimate the time tree of Philippine Gekko in order to test biogeographical predictions of species relationships. The phylogenetic trees from the posterior distribution of the Bayesian analyses were used for testing biogeographical hypotheses. Haplotype networks were created for the widespread species Gekko mindorensis to explore genetic variation within recently divergent clades. Results Both maximum likelihood and Bayesian phylogenetic analyses indicated that Philippine Gekko species are a diverse clade with a long history in the archipelago. Ancestral range reconstruction and divergence time analyses suggest a Palawan microcontinental origin for this clade, coinciding with Palawan’s separation from Asia beginning 30 Ma, with subsequent diversification in the oceanic Philippine islands. The widespread species G. mindorensis and G. monarchus diversified in the late Miocene/early Pliocene and are potentially complexes of numerous undescribed species. Main conclusions The view of the Philippine islands as a ‘fringing archipelago’ does not explain the pattern of species diversity in the genus Gekko. Philippine Gekko species have diversified within the archipelago over millions of years of isolation, forming a large diverse group of endemic species. Furthermore, the Philippine radiation of gekkonid lizards demonstrates biogeographical patterns most consistent with stochastic colonization followed by in situ diversification. Our results reveal the need to consider deeper time geological processes and their potential role in the evolution of some Philippine terrestrial organisms.
The gekkonid genus Cyrtodactylus is the third most speciose vertebrate genus in the world, containing well over 300 species that collectively range from South Asia to Melanesia across some of the most diverse landscapes and imperiled habitats on the planet. A genus-wide phylogeny of the group has never been presented because researchers working on different groups were using different genetic markers to construct phylogenies that could not be integrated. We present here Maximum likelihood and Bayesian inference mitochondrial and mito-nuclear phylogenies incorporating of 310 species that include dozens of species that had never been included in a genus-wide analysis. Based on the mitochondrial phylogeny, we partition Cyrtodactylus into 31 well-supported monophyletic species groups which, if used as recommended herein, will increase the information content of future integrative taxonomic analyses that continue to add new species to this genus at an ever-increasing annual rate. Data presented here reiterate the outcome of several previous studies indicating that Cyrtodactylus comprises an unprecedented number of narrow-range endemics restricted to single mountain tops, small islands, or karst formations that still remain unprotected. This phylogeny can provide a platform for various comparative ecological studies that can be integrated with conservation management programs across the broad diversity of landscapes and habitats occupied by this genus. Additionally, these data indicate that the true number of Cyrtodactylus remains substantially underrepresented.
We report new distribution records for amphibians and reptiles from 20 localities within the northern Cordillera Mountain Range of Ilocos Norte Province, Luzon Island, Philippines. Together with opportunistic collections of specimens from past surveys, our new data result in a total of 58 amphibian and reptile species for Ilocos Norte Province and the extreme northern Cordilleras—all of which constitute major geographic range extensions. We utilize new data and IUCN formalized conservation assessment criteria to revise the conservation status of many species. Our results highlight the degree to which fundamental distribution data are lacking for Luzon amphibians and reptiles and emphasize the manner in which many current species assessments are based on incomplete data and, as a result, may be sorely misleading. The complex biogeography of Luzon’s herpetofauna remains poorly understood, providing opportunities for future research and conservation efforts once distribution patterns and local abundances are properly documented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.