In every connected component of every stratum of Abelian differentials, we construct square-tiled surfaces with one vertical and one horizontal cylinder. We show that for all but the hyperelliptic components this can be achieved in the minimum number of squares necessary for a square-tiled surface in that stratum. For the hyperelliptic components, we show that the number of squares required is strictly greater and construct surfaces realising these bounds. Using these surfaces, we demonstrate that pseudo-Anosov homeomorphisms optimising the ratio of Teichmüller to curve graph translation length are, in a reasonable sense, ubiquitous in the connected components of strata of Abelian differentials. Finally, we present a further application to filling pairs on punctured surfaces by constructing filling pairs whose algebraic and geometric intersection numbers are equal.
In this short note, we construct a minimally intersecting pair of simple closed curves that fill a genus 2 surface with an odd, greater than 3, number of punctures. This finishes the determination of minimally intersecting filling pairs for all surfaces completing the work of Aougab-Huang and Aougab-Taylor.
We consider harmonic measures that arise from random walks on the mapping class group determined by probability distributions that have finite first moments with respect to the Teichmüller metric and whose supports generate nonelementary subgroups. We prove that Teichmüller space with the Teichmüller metric is statistically hyperbolic for such a harmonic measure.
In every connected component of every stratum of Abelian differentials, we construct square-tiled surfaces with one vertical and one horizontal cylinder. We show that for all but the hyperelliptic components this can be achieved in the minimum number of squares necessary for a square-tiled surface in that stratum. For the hyperelliptic components, we show that the number of squares required is strictly greater and construct surfaces realising these bounds.Using these surfaces, we demonstrate that pseudo-Anosov homeomorphisms optimising the ratio of Teichm üller to curve graph translation length are, in a reasonable sense, ubiquitous in the connected components of strata of Abelian differentials. Finally, we present a further application to filling pairs on punctured surfaces by constructing filling pairs whose algebraic and geometric intersection numbers are equal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.