Summary Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously identified...
PurposeDocetaxel has a demonstrated survival benefit for patients with metastatic castration-resistant prostate cancer (mCRPC); however, 10% to 20% of patients discontinue docetaxel prematurely because of toxicity-induced adverse events, and the management of risk factors for toxicity remains a challenge.Patients and MethodsThe comparator arms of four phase III clinical trials in first-line mCRPC were collected, annotated, and compiled, with a total of 2,070 patients. Early discontinuation was defined as treatment stoppage within 3 months as a result of adverse treatment effects; 10% of patients discontinued treatment. We designed an open-data, crowd-sourced DREAM Challenge for developing models with which to predict early discontinuation of docetaxel treatment. Clinical features for all four trials and outcomes for three of the four trials were made publicly available, with the outcomes of the fourth trial held back for unbiased model evaluation. Challenge participants from around the world trained models and submitted their predictions. Area under the precision-recall curve was the primary metric used for performance assessment.ResultsIn total, 34 separate teams submitted predictions. Seven models with statistically similar area under precision-recall curves (Bayes factor ≤ 3) outperformed all other models. A postchallenge analysis of risk prediction using these seven models revealed three patient subgroups: high risk, low risk, or discordant risk. Early discontinuation events were two times higher in the high-risk subgroup compared with the low-risk subgroup. Simulation studies demonstrated that use of patient discontinuation prediction models could reduce patient enrollment in clinical trials without the loss of statistical power.ConclusionThis work represents a successful collaboration between 34 international teams that leveraged open clinical trial data. Our results demonstrate that routinely collected clinical features can be used to identify patients with mCRPC who are likely to discontinue treatment because of adverse events and establishes a robust benchmark with implications for clinical trial design.
The first challenge to develop an energy efficient application is to measure the application's energy consumption, which requires sophisticated hardware infrastructure and sig nificant amounts of developers' time. Models and tools that estimate software energy consumption can save developers time, as application profiling is much easier and more widely available than hardware instrumentation for measuring software energy consumption. Our work focuses on modelling software energy consumption by using system calls and machine learning tech niques. This system call based model is validated against actual energy measurements from five different Android applications.These results demonstrate that system call counts can successfully model software energy consumption if the idle energy consump tion of an application is estimated or known. In the absence of any knowledge of an application's idle energy consumption, our system call based approach is still useful to compare the energy consumption among different versions of the same application.
ObjectiveTo develop machine learning models employing administrative health data that can estimate risk of adverse outcomes within 30 days of an opioid dispensation for use by health departments or prescription monitoring programmes.Design, setting and participantsThis prognostic study was conducted in Alberta, Canada between 2017 and 2018. Participants included all patients 18 years of age and older who received at least one opioid dispensation. Pregnant and cancer patients were excluded.ExposureEach opioid dispensation served as an exposure.Main outcomes/measuresOpioid-related adverse outcomes were identified from linked administrative health data. Machine learning algorithms were trained using 2017 data to predict risk of hospitalisation, emergency department visit and mortality within 30 days of an opioid dispensation. Two validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine learning discrimination was compared with current opioid guidelines.ResultsParticipants in the 2017 training set (n=275 150) and validation set (n=117 829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression and neural network classifiers were 0.87, 0.87 and 0.80, respectively. In the 2018 validation set (n=393 023), the corresponding c-statistics were 0.88, 0.88 and 0.82. C-statistics from the Canadian guidelines ranged from 0.54 to 0.69 while the US guidelines ranged from 0.50 to 0.62. The top five percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, respectively, up from the pretest probability of 1.6%.ConclusionMachine learning classifiers, especially incorporating hospitalisation/physician claims data, have better predictive performance compared with guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programmes and health departments with access to administrative data can use machine learning classifiers to effectively identify those at higher risk compared with current guideline-based approaches.
BackgroundDocetaxel has a demonstrated survival benefit for metastatic castration-resistant prostate cancer (mCRPC). However, 10-20% of patients discontinue docetaxel prematurely because of toxicity-induced adverse events, and managing risk factors for toxicity remains an ongoing challenge for health care providers and patients. Prospective identification of high-risk patients for early discontinuation has the potential to assist clinical decision-making and can improve the design of more efficient clinical trials. In partnership with Project Data Sphere (PDS), a nonprofit initiative facilitating clinical trial data-sharing, we designed an open-data, crowdsourced DREAM (Dialogue for Reverse Engineering Assessments and Methods) Challenge for developing models to predict early discontinuation of docetaxel MethodsData from the comparator arms of four phase III clinical trials in first-line mCRPC were obtained from PDS, including 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 598 patients treated with docetaxel, prednisone/prednisolone, and placebo in the VENICE trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, and 528 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Early discontinuation was defined as treatment stoppage within three months due to adverse treatment effects. Over 150 clinical features including laboratory values, medical history, lesion measures, prior treatment, and demographic variables were curated and made freely available for model building for all four trials. The ASCENT2, VENICE, and MAINSAIL trial data sets formed the training set that also included patient discontinuation status. The ENTHUSE 33 trial, with patient discontinuation status hidden, was used as an independent validation set to evaluate model performance. Prediction performance was assessed using area under the precision-recall curve (AUPRC) and the Bayes factor was used to compare the performance between prediction models. ResultsThe frequency of early discontinuation was similar between training (ASCENT2, VENICE, and MAINSAIL) and validation (ENTHUSE 33) sets, 12.3% versus 10.4% of docetaxel-treated patients, respectively. In total, 34 independent teams submitted predictions from 61 different models. AUPRC ranged from 0.088 to 0.178 across submissions with a random model performance of 0.104. Seven models with comparable AUPRC scores (Bayes factor ≤ 3) were observed to outperform all other models. A post-challenge analysis of risk predictions generated by these seven models revealed three distinct patient subgroups: patients consistently predicted to be at high-risk or low-risk for early discontinuation and those with discordant risk predictions. Early discontinuation events were two-times higher in the high-versus low-risk subgroup and baseline clinical features such as presence/absence of metastatic liver lesions, and prior treatment with analgesics and ACE inhibitors exhibited statistically significant differences between the high-and low...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.