Background: The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle -aquatic/snail (eggs, miracidia, sporocysts, cercariae), juvenile (lung schistosomula and paired but pre-egg laying adults) and adult (paired, mature males and eggproducing females, both examined separately). Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite.
BackgroundThe functions of many schistosome gene products remain to be characterized. A major step towards elucidating function of these genes would be in defining their sites of expression. This goal is rendered difficult to achieve by the generally small size of the parasites and the lack of a body cavity, which precludes analysis of transcriptional profiles of the tissues in isolation.Methodology/Principal FindingsHere, we describe a combined laser microdissection microscopy (LMM) and microarray analysis approach to expedite tissue specific profiling and gene atlasing for tissues of adult female Schistosoma japonicum. This approach helps to solve the gene characterization “bottle-neck” brought about by acoelomy and the size of these parasites. Complementary RNA obtained after isolation from gastrodermis (parasite gut mucosa), vitelline glands and ovary by LMM were subjected to microarray analyses, resulting in identification of 147 genes upregulated in the gastrodermis, 4,149 genes in the ovary and 2,553 in the vitellaria.ConclusionsThis work will help to shed light on the molecular pathobiology of this debilitating human parasite and aid in the discovery of new targets for the development of anti-schistosome vaccines and drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.