Temporal disaggregation is a method commonly used in official statistics to enable high-frequency estimates of key economic indicators, such as gross domestic product (GDP). Traditionally, such methods have relied on only a couple of high-frequency indicator series to produce estimates. However, the prevalence of large, and increasing, volumes of administrative and alternative data-sources motivates the need for such methods to be adapted for high-dimensional settings. In this article, we propose a novel sparse temporal-disaggregation procedure and contrast this with the classical Chow-Lin method. We demonstrate the performance of our proposed method through simulation study, highlighting various advantages realised. We also explore its application to disaggregation of UK GDP data, demonstrating the method's ability to operate when the number of potential indicators is greater than the number of low-frequency observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.