For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals–chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten–to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ–a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants.
Phytochemical diversity is comprised of two main dimensions—the average (alpha) within‐plant neighbors or the difference (beta) in the composition of chemicals between plant neighbors. Research, however, has primarily examined the consequences of phytochemical diversity on herbivore performance through a single dimension, even though diversity is multidimensional. Furthermore, the ecological role of phytochemical diversity is not well understood because each of these dimensions exhibits unique biological effects on herbivore performance. Therefore, it has been difficult to tease apart the relative importance of alpha and beta chemical diversities on plant–herbivore interactions. We experimentally manipulated alpha and beta diversities along a chemical gradient to disentangle the relative effects of these dimensions on the performance of a mobile generalist herbivore, Trichoplusia ni (Hübner), using 16 genotypes from the Solanum pennellii introgression lines. First, we found contrasting effects of alpha and beta diversities on herbivore performance. Second, when comparing diversity across and within chemical classes, herbivore performance was reduced when plant neighbors had greater diversity within chemical classes that are biologically inhibiting at higher quantities (i.e., quantitative defenses such as phenolics and acyl sugars). However, herbivore performance was enhanced when plant neighbors had higher levels of chemical classes that are biologically toxic (i.e., qualitative defenses such as alkaloids). Finally, herbivores performed better on plant dicultures compared to monocultures, and performance was positively associated with plant dicultures only when there were high levels of average alpha diversity within plant neighbors. Our results suggest T. ni generalist caterpillars do better when plant neighbors are chemically different because differences provide options for them to choose or to switch between plants to balance chemical uptake. Overall, herbivores interact with a large diversity of plant chemicals at multiple scales, and our results indicate that not all chemical diversity is equal: specific dimensions of phytochemical diversity have unique effects on the dynamics of herbivore performance.
1. Variability in plant traits such as nutrients and defences can challenge insect herbivores searching for a host plant. Cultivar mixtures are designed to harness this variability to reduce herbivore damage in agroecosystems but have had mixed success.2. We examine how the spatial frequency of plant trait variability-a fundamental but rarely examined feature of variability-influences insect foraging and survival. We released a generalist herbivore into monocultures of two chemically distinct tomato varieties or dicultures of the two varieties with two spatial frequencies of chemical diversity and tracked herbivore movement and feeding damage.3. We found the pattern of herbivore feeding damage was more spatially concentrated in both diculture treatments than in either monoculture, indicating that the presence of chemical diversity, regardless of its spatial frequency, influences herbivore foraging. 4. In contrast, total amount of feeding damage was reduced by 25% in dicultures where genotypes were grouped compared to monocultures or dicultures with alternating genotypes, which had similar levels of damage. 5. Similarly, herbivore survival in the low-frequency diculture was nearly half the survival in the high-frequency diculture or monocultures. Synthesis and applications. Whereas previous work investigates how the amount of chemical diversity in a plant population influences insect ecology, our resultsindicate that local spatial distribution of diversity is equally important. A key implication of this work is the potential to design cultivar mixtures spatially, at the movement scale of target organisms, to create more effective pest management landscapes and promote sustainable agriculture.
Extreme heat events are becoming more frequent and intense as climate variability increases, and these events inherently vary in their timing. We predicted that the timing of a heat wave would determine its consequences for insect communities owing to temporal variation in the susceptibility of host plants to heat stress. We subjected common milkweed (Asclepias syriaca) plants to in‐field experimental heat waves to investigate how the timing of heat waves, both seasonally and relative to a biotic stressor (experimental herbivory), affected their ecological consequences. We found that heat waves had multiyear, timing‐specific effects on plant–insect communities. Early‐season heat waves led to greater and more persistent effects on plants and herbivore communities than late‐season heat waves. Heat waves following experimental herbivory had reduced consequences. Our results show that extreme climate events can have complex, lasting ecological effects beyond the year of the event—and that timing is key to understanding those effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.