Basket trials are an innovative precision medicine clinical trial design evaluating a single targeted therapy across multiple diseases that share a common characteristic. To date, most basket trials have been conducted in early-phase oncology settings, for which several Bayesian methods permitting information sharing across subtrials have been proposed. With the increasing interest of implementing randomised basket trials, information borrowing could be exploited in two ways; considering the commensurability of either the treatment effects or the outcomes specific to each of the treatment groups between the subtrials. In this article, we extend a previous analysis model based on distributional discrepancy for borrowing over the subtrial treatment effects ('treatment effect borrowing', TEB) to borrowing over the subtrial groupwise responses ('treatment response borrowing', TRB). Simulation results demonstrate that both modelling strategies provide substantial gains over an approach with no borrowing. TRB outperforms TEB especially when subtrial sample sizes are small on all operational characteristics, while the latter has considerable gains in performance over TRB when subtrial sample sizes are large, or the treatment effects and groupwise mean responses are noticeablyThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background Despite progress that has been made in the treatment of many immune-mediated inflammatory diseases (IMIDs), there remains a need for improved treatments. Randomised controlled trials (RCTs) provide the highest form of evidence on the effectiveness of a potential new treatment regimen, but they are extremely expensive and time consuming to conduct. Consequently, much focus has been given in recent years to innovative design and analysis methods that could improve the efficiency of RCTs. In this article, we review the current use and future potential of these methods within the context of IMID trials. Methods We provide a review of several innovative methods that would provide utility in IMID research. These include novel study designs (adaptive trials, Sequential Multi-Assignment Randomised Trials, basket, and umbrella trials) and data analysis methodologies (augmented analyses of composite responder endpoints, using high-dimensional biomarker information to stratify patients, and emulation of RCTs from routinely collected data). IMID trials are now well-placed to embrace innovative methods. For example, well-developed statistical frameworks for adaptive trial design are ready for implementation, whilst the growing availability of historical datasets makes the use of Bayesian methods particularly applicable. To assess whether and how these innovative methods have been used in practice, we conducted a review via PubMed of clinical trials pertaining to any of 51 IMIDs that were published between 2018 and 20 in five high impact factor clinical journals. Results Amongst 97 articles included in the review, 19 (19.6%) used an innovative design method, but most of these were relatively straightforward examples of innovative approaches. Only two (2.1%) reported the use of evidence from routinely collected data, cohorts, or biobanks. Eight (9.2%) collected high-dimensional data. Conclusions Application of innovative statistical methodology to IMID trials has the potential to greatly improve efficiency, to generalise and extrapolate trial results, and to further personalise treatment strategies. Currently, such methods are infrequently utilised in practice. New research is required to ensure that IMID trials can benefit from the most suitable methods.
Umbrella trials are an innovative trial design where different treatments are matched with subtypes of a disease, with the matching typically based on a set of biomarkers. Consequently, when patients can be positive for more than one biomarker, they may be eligible for multiple treatment arms. In practice, different approaches could be applied to allocate patients who are positive for multiple biomarkers to treatments. However, to date there has been little exploration of how these approaches compare statistically. We conduct a simulation study to compare five approaches to handling treatment allocation in the presence of multiple biomarkersequal randomisation; randomisation with fixed probability of allocation to control; Bayesian adaptive randomisation (BAR); constrained randomisation; and hierarchy of biomarkers. We evaluate these approaches under different scenarios in the context of a hypothetical phase II biomarker-guided umbrella trial. We define the pairings representing the pre-trial expectations on efficacy as linked pairs, and the other biomarker-treatment pairings as unlinked. The hierarchy and BAR approaches have the highest power to detect a treatment-biomarker linked interaction.However, the hierarchy procedure performs poorly if the pre-specified treatment-biomarker pairings are incorrect. The BAR method allocates a higher proportion of patients who are positive for multiple biomarkers to promising treatments when an unlinked interaction is present. In most scenarios, the constrained randomisation approach best balances allocation to all treatment arms. Pre-specification of an approach to deal with treatment allocation in the presence of multiple biomarkers is important, especially when overlapping subgroups are likely.
Background: Despite progress that has been made in the treatment of many immune-mediated inflammatory diseases (IMIDs), there remains a need for improved treatments. Randomised controlled trials (RCTs) provide the highest form of evidence on the effectiveness of a potential new treatment regimen, but they are extremely expensive and time consuming to conduct. Consequently, much focus has been given in recent years to innovative design and analysis methods that could improve the efficiency of RCTs. In this article, we review the current use and future potential of these methods within the context of IMID trials.Methods: We provide a review of several innovative methods that would provide utility in IMID research. These include novel study designs (adaptive trials, Sequential Multi-Assignment Randomised Trials, basket, and umbrella trials) and data analysis methodologies (augmented analyses of composite responder endpoints, using high-dimensional biomarker information to stratify patients, and emulation of RCTs from routinely collected data). IMID trials are now well-placed to embrace innovative methods. For example, well-developed statistical frameworks for adaptive trial design are ready for implementation, whilst the growing availability of historical datasets makes the use of Bayesian methods particularly applicable.To assess whether and how these innovative methods have been used in practice, we conducted a review via PubMed of clinical trials pertaining to any of 51 IMIDs that were published between 2018-20 in five high impact factor clinical journals. Results: Amongst 97 articles included in the review, 19 (19.6%) used an innovative design method, but most of these were relatively straightforward examples of innovative approaches. Only two (2.1%) reported the use of evidence from routinely collected data, cohorts, or biobanks. Eight (9.2%) collected high-dimensional data. Conclusions: Application of innovative statistical methodology to IMID trials has the potential to greatly improve efficiency, to generalise and extrapolate trial results, and to further personalise treatment strategies. Currently, such methods are infrequently utilised in practice. New research is required to ensure that IMID trials can benefit from the most suitable methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.