Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression of the enzyme in confluent cells. Here, the A/T recognizing fluorophore, p-anisylbenzimidazolecarboxamido (Hx) was incorporated into the hybrid polyamide HxIP, which fluoresces upon binding to DNA, providing an intrinsic probe to monitor cellular uptake. HxIP targets the 5'-TACGAT-3' sequence of the 5' flank of ICB2 with high affinity and sequence specificity, eliciting an ICB2-selective inhibition/displacement of NF-Y. HxIP is readily taken up by NIH3T3 and A549 cells, and detected in the nucleus within minutes. Exposure to the polyamide at confluence resulted in a dose-dependent upregulation of topo IIα expression and enhanced formation of etoposide-induced DNA strand breaks.
The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).
DNA interactive agents have been used in the clinical setting for the treatment of cancer since the beginning of modern-era chemotherapy. Despite a shift of focus towards molecular targeted therapy, DNA remains a critical macromolecular target for anti-cancer intervention and the next generation of agents must conform to the optimum combination of increased therapeutic activity and reduced off-target toxicity. We evaluate the potential of non-covalent DNA binding small molecules as "gene-control" agents, exploiting inherent or engineered sequence selectivity, to target critical genomic sequences. In addition we review examples of natural products and synthetic derivatives that exert their activity through sequence specific DNA-covalent modification.
Background
Sequence specific polyamide HxIP 1, targeted to the inverted CCAAT Box 2 (ICB2) on the topoisomerase IIα (topo IIα) promoter can inhibit NF-Y binding, re-induce gene expression and increase sensitivity to etoposide. To enhance biological activity, diamino-containing derivatives (HxI*P 2 and HxIP* 3) were synthesised incorporating an alkyl amino group at the N1-heterocyclic position of the imidazole/pyrrole.
Methods
DNase I footprinting was used to evaluate DNA binding of the diamino Hx-polyamides, and their ability to disrupt the NF-Y:ICB2 interaction assessed using EMSAs. Topo IIα mRNA (RT-PCR) and protein (Immunoblotting) levels were measured following 18h polyamide treatment of confluent A549 cells. γH2AX was used as a marker for etoposide-induced DNA damage after pre-treatment with HxIP* 3 and cell viability was measured using Cell-Titer Glo®.
Results
Introduction of the N1-alkyl amino group reduced selectivity for the target sequence 5′-TACGAT-3′ on the topo IIα promoter, but increased DNA binding affinity. Confocal microscopy revealed both fluorescent diamino polyamides localised in the nucleus, yet HxI*P 2 was unable to disrupt the NF-Y:ICB2 interaction and showed no effect against the downregulation of topo IIα. In contrast, inhibition of NF-Y binding by HxIP* 3 stimulated dose-dependent (0.1-2 μM) re-induction of topo IIα and potentiated cytotoxicity of topo II poisons by enhancing DNA damage.
Conclusions
Polyamide functionalisation at the N1-position offers a design strategy to improve drug-like properties. Dicationic HxIP* 3 increased topo IIα expression and chemosensitivity to topo II-targeting agents.
General Significance
Pharmacological modulation of topo IIα expression has the potential to enhance cellular sensitivity to clinically-used anticancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.