Follicular dendritic cells and complement receptors 1 and 2 are important for the generation of humoral immunity. Cr1/2 expression on B cells and FDC has been shown to provide a secondary signal for B cell activation, to facilitate transport of antigen in immune follicles, and to enhance retention of immune complexes by FDC. We show here that murine B cells predominantly express the Cr2 product from the Cr2 gene while FDC nearly exclusively express the Cr1 isoform generated from the Cr2 gene. To define the specific role of Cr1, we have created an animal that maintains normal cell restricted expression of Cr2 but does not express Cr1. Cr1 deficient (Cr1KO) mice develop normal B1 and B2 immature and mature B cell subsets, and have normal levels of naïve serum antibodies but altered levels of natural antibodies. Immunization of the Cr1KO animal demonstrates deficient antibody responses to T-dependent but not T-independent antigens. Germinal centers from the immunized Cr1KO animal possess a deficiency in activated B cells, similar to that seen for the animal lacking both Cr1 and Cr2, or C3. Finally, animals lacking only Cr1 respond similar to the WT animal to infections with Streptococcus pneumoniae, a pathogen that animals lacking C3 or both Cr1 and Cr2 are particularly sensitive to. These data, in total, suggest that the production of Cr1 primarily by FDC is critical in the generation of appropriately activated B cells of the germinal center and the generation of mature antibody responses.
An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo. Here we demonstrate that several immunizations with MPER/liposomes induce high levels of bone marrow long-lived plasma cell (LLPC) antibody production. Single-cell immunoglobulin gene retrieval analysis shows that these plasma cells are derived from a germ line repertoire of B cells with a diverse representation of immunoglobulin genes, exhibiting antigen-driven positive selection. Characterization of LLPC recombinant monoclonal antibodies (rMAbs) indicates that antigen recognition is achieved through convergence on a common epitopic focus by utilizing various complementarity-determining region H3 (CDRH3) lengths. Importantly, the vast majority of rMAbs produced from these cells lack polyreactivity yet manifest antigen specificity in the context of lipids, shaping MPER-specific paratopes through selective pressure. Taken together, these findings demonstrate that the MPER is a vaccine target with minimal risk of generating off-target autoimmunity.IMPORTANCE A useful vaccine must generate desired long-term, antigen-specific antibody responses devoid of polyreactivity or autoreactivity. The common polyreactive features of some HIV-1 BNAbs have raised concern about elicitation of anti-MPER antibodies. Utilizing single-LLPC repertoire analysis and biophysical characterization of anti-MPER rMAbs, we show that their fine specificities require a structural fitness of the antibody combining site involving heavy and light chain variable domains shaped by somatic hypermutation and affinity maturation of B cells in the germinal center. Perhaps more importantly, our results demonstrate that the majority of MPER-specific antibodies are not inherently polyspecific and/or autoreactive, suggesting that polyreactivity of MPER-specific antibodies is separable from their antigen specificity.
Mammalian prion diseases are caused by prions, unique infectious agents composed primarily, if not solely, of a pathologic, misfolded form of a normal host protein, the cellular prion protein (PrPC). Prions replicate without a genetic blueprint, but rather contact PrPC and coerce it to misfold into more prions, which cause neurodegeneration akin to other protein-misfolding diseases like Alzheimer’s disease. A single gene produces two alternatively spliced mRNA transcripts that encode mouse complement receptors CD21/35, which promote efficient prion replication in the lymphoid system and eventual movement to the brain. Here we show that CD21/35 are high-affinity prion receptors, but mice expressing only CD21 die from prion disease sooner than CD35-expressing mice, which contain less prions early after infection and exhibit delayed terminal disease, likely due to their less organized splenic follicles. Thus, CD21 appears to be more important for defining splenic architecture that influences prion pathogenesis.
Liposomal vaccines incorporating adjuvant and CD4 T cell helper peptides enhance antibody responses against weakly immunogenic B cell epitopes such as found in the membrane proximal external region (MPER) of the HIV-1 gp41 subunit. While the inclusion of exogenous helper peptides in vaccine formulations facilitates stronger and more durable antibody responses, the helper peptide incorporation strategy per se may influence the overall magnitude and quality of B cell target antigen immunogenicity. Both variability in individual peptide encapsulation as well as the potential for liposome surface-associated helper peptides to misdirect the humoral response are potential parameters impacting outcome. In this study, we used MPER/liposome vaccines as a model system to examine how the mode of the potent LACK T helper peptide formulation modulates antibody responses against the MPER antigen. We directly compared liposome surface-arrayed palmitoyl LACK (pLACK) versus soluble LACK (sLACK) encapsulated in the liposomes and free in solution. Independent of LACK formulation methods, dendritic cell activation and LACK presentation were equivalent in vivo. The frequency of MPER-specific GC B cells promoted by sLACK was higher than that stimulated by pLACK formulation, a finding associated with a significantly greater frequency of LACK-specific GC B cells induced by pLACK. While there were no significant differences in the quantity of MPER-specific serological responses, the MPER-specific antibody titer trended higher with sLACK formulated vaccines at the lower dose of LACK. However, pLACK generated relatively greater MPER-specific antibody affinities than those induced by sLACK-formulated vaccines. Overall, the results suggest that liposomal surface-associated LACK enhances immunogenicity of LACK through better engagement of LACK-specific B cells. Of note, this is not detrimental to the induction of MPER-specific immune responses; rather, the elicitation of higher affinity anti-MPER antibodies benefits from augmented help delivered via covalent linkage of the pLACK CD4 T cell epitope in conjunction with MPER/liposome presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.