Abstract-Electricity price, consumption, and demand forecasting has been a topic of research interest for a long time. The proliferation of smart meters has created new opportunities in energy prediction. This paper investigates energy cost forecasting in the context of entertainment event-organizing venues, which poses significant difficulty due to fluctuations in energy demand and wholesale electricity prices. The objective is to predict the overall cost of energy consumed during an entertainment event. Predictions are carried out separately for each event category and feature selection is used to select the most effective combination of event attributes for each category. Three machine learning approaches are considered: k-nearest neighbor (KNN) regression, support vector regression (SVR) and neural networks (NN). These approaches are evaluated on a case study involving a large event venue in Southern Ontario. In terms of prediction accuracy, KNN regression achieved the lowest average error. Error rates varied greatly among different event categories.
Benchmarking makes it possible to identify low-performing buildings, establishes a baseline for measuring performance improvements, enables setting of energy conservation targets, and encourages energy savings by creating a competitive environment. Statistical approaches evaluate building energy efficiency by comparing measured energy consumption to other similar buildings typically using annual measurements. However, it is important to consider different time periods in benchmarking because of differences in their consumption patterns. For example, an office can be efficient during the night, but inefficient during operating hours due to occupants' wasteful behavior. Moreover, benchmarking studies often use a single regression model for different building categories. Selecting the regression model based on actual data would ensure that the model fits the data well. Consequently, this paper proposes Energy Slices, an energy benchmarking approach with time slicing for existing buildings. Time slicing enables separation of time periods with different consumption patterns. The regression model suited for the specific scenario is selected using cross validation, which ensures that the model performs well on previously unseen data. The evaluation is carried out on a case study involving two sports arenas; event energy efficiency is benchmarked to identify low-performing events. The case study demonstrates the Energy Slice procedure and shows the importance of model selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.