This paper considers specification testing for regression models with errors-in-variables and proposes a test statistic comparing the distance between the parametric and nonparametric fits based on deconvolution techniques. In contrast to the methods proposed by Hall and Ma (2007, Annals of Statistics, 35, 2620–2638) and Song (2008, Journal of Multivariate Analysis, 99, 2406–2443), our test allows general nonlinear regression models and possesses complementary local power properties. We establish the asymptotic properties of our test statistic for the ordinary and supersmooth measurement error densities. Simulation results endorse our theoretical findings: our test has advantages in detecting high-frequency alternatives and dominates the existing tests under certain specifications.
In this paper, we derive the asymptotic properties of the density-weighted average derivative estimator when a regressor is contaminated with classical measurement error and the density of this error must be estimated. Average derivatives of conditional mean functions are used extensively in economics and statistics, most notably in semiparametric index models. As well as ordinary smooth measurement error, we provide results for supersmooth error distributions. This is a particularly important class of error distribution as it includes the Gaussian density. We show that under either type of measurement error, despite using nonparametric deconvolution techniques and an estimated error characteristic function, we are able to achieve a $\sqrt {n}$ -rate of convergence for the average derivative estimator. Interestingly, if the measurement error density is symmetric, the asymptotic variance of the average derivative estimator is the same irrespective of whether the error density is estimated or not. The promising finite sample performance of the estimator is shown through a Monte Carlo simulation.
In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes an estimator for such models by extending Horowitz and Mammen ( 2004)'s two-stage estimator to the errors-in-variables case. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.
We develop the first nonparametric significance test for regression models with classical measurement error in the regressors. In particular, a Cramér-von Mises test and a Kolmogorov–Smirnov test for the null hypothesis $E\left [Y|X^{*},Z^{*}\right ]=E\left [Y|X^{*}\right ]$ are proposed when only noisy measurements of $X^{*}$ and $Z^{*}$ are available. The asymptotic null distributions of the test statistics are derived, and a bootstrap method is implemented to obtain the critical values. Despite the test statistics being constructed using deconvolution estimators, we show that the test can detect a sequence of local alternatives converging to the null at the $\sqrt {n}$ -rate. We also highlight the finite sample performance of the test through a Monte Carlo study.
Using play-by-play American football data and panel data on head coach remuneration, we test whether a head coach's incentive pay affects the quality of their decisions. We proceed by first estimating an 'optimal strategy' for first-down offensive plays, then investigate whether the gap between actual and optimal choices is affected by incentive pay. In contrast to merely looking at the outcome of an agent's choice, our approach considers the decision environment and the resources available. We find a small, but significant, negative effect of incentive pay on decision quality. Critically, this effect is not found when looking at raw outcome measures. (J33; C23)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.