Disease in U.S. animal livestock industries annually costs over a billion dollars. Adoption and compliance with biosecurity practices is necessary to successfully reduce the risk of disease introduction or spread. Yet, a variety of human behaviors, such as the urge to minimize time costs, may induce non-compliance with biosecurity practices. Utilizing a “serious gaming” approach, we examine how information about infection risk impacts compliance with biosecurity practices. We sought to understand how simulated environments affected compliance behavior with treatments that varied using three factors: (1) the risk of acquiring an infection, (2) the delivery method of the infection risk message (numerical, linguistic and graphical), and (3) the certainty of the infection risk information. Here we show that compliance is influenced by message delivery methodology, with numeric, linguistic, and graphical messages showing increasing efficacy, respectively. Moreover, increased situational uncertainty and increased risk were correlated with increases in compliance behavior. These results provide insight toward developing messages that are more effective and provide tools that will allow managers of livestock facilities and policy makers to nudge behavior toward more disease resilient systems via greater compliance with biosecurity practices.
Hog producers' operational decisions can be informed by an awareness of risks associated with emergent and endemic diseases. Outbreaks of porcine epidemic diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with substantial losses across the hog production supply chain. Interestingly, a decreasing trend in PEDv incidence is visible. We assert that changes in human behaviors may underlie this trend. Disease prevention using biosecurity practices is used to minimize risk of infection but its efficacy is conditional on human behavior and risk attitude. Standard epidemiological models bring important insights into disease dynamics but have limited predictive ability. Since research shows that human behavior plays a driving role in the disease spread process, the explicit inclusion of human behavior into models adds an important dimension to understanding disease spread. Here we analyze PEDv incidence emerging from an agent-based model (ABM) that uses both epidemiological dynamics and algorithms that incorporate heterogeneous human decisions. We investigate the effects of shifting fractions of hog producers between risk tolerant and risk averse positions. These shifts affect the dynamics describing willingness to increase biosecurity as a response to disease threats and, indirectly, change infection probabilities and the resultant intensity and impact of the disease outbreak. Our ABM generates empirically verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts (10% of the producer agents) toward a risk averse position can lead to a significant decrease in total incidence. For significantly steeper decreases in disease incidence, the model's hog producer population needed at least 37.5% of risk averse. Our study provides insight into the link between risk attitude, decisions related to biosecurity, and consequent spread of disease within a livestock production system. We suggest that it is possible to create positive, lasting changes in animal health by nudging the population of livestock producers toward more risk averse behaviors. We make a case for integrating social and epidemiological aspects in disease spread models to test intervention strategies intended to improve biosecurity and animal health at the system scale.
Multiple coronaviruses including MERS-CoV causing Middle East Respiratory Syndrome, SARS-CoV causing SARS, and SARS-CoV-2 causing COVID-19, use a mechanism known as −1 programmed ribosomal frameshifting (−1 PRF) to replicate. SARS-CoV-2 possesses a unique RNA pseudoknotted structure that stimulates −1 PRF. Targeting −1 PRF in SARS-CoV-2 to impair viral replication can improve patients’ prognoses. Crucial to developing these therapies is understanding the structure of the SARS-CoV-2 −1 PRF pseudoknot. Our goal is to expand knowledge of −1 PRF structural conformations. Following a structural alignment approach, we identify similarities in −1 PRF pseudoknots of SARS-CoV-2, SARS-CoV, and MERS-CoV. We provide in-depth analysis of the SARS-CoV-2 and MERS-CoV −1 PRF pseudoknots, including reference and noteworthy mutated sequences. To better understand the impact of mutations, we provide insight on −1 PRF pseudoknot sequence mutations and their effect on resulting structures. We introduce Shapify, a novel algorithm that given an RNA sequence incorporates structural reactivity (SHAPE) data and partial structure information to output an RNA secondary structure prediction within a biologically sound hierarchical folding approach. Shapify enhances our understanding of SARS-CoV-2 −1 PRF pseudoknot conformations by providing energetically favourable predictions that are relevant to structure-function and may correlate with −1 PRF efficiency. Applied to the SARS-CoV-2 −1 PRF pseudoknot, Shapify unveils previously unknown paths from initial stems to pseudoknotted structures. By contextualizing our work with available experimental data, our structure predictions motivate future RNA structure-function research and can aid 3-D modeling of pseudoknots.
Failing to mitigate propagation of disease spread can result in dire economic consequences for agricultural networks. Pathogens like Porcine Epidemic Diarrhea virus, can quickly spread among producers. Biosecurity is designed to prevent infection transmission. When considering biosecurity investments, management must balance the cost of protection versus the consequences of contracting an infection. Thus, an examination of the decision making processes associated with investment in biosecurity is important for enhancing system wide biosecurity. Data gathered from experimental gaming simulations can provide insights into behavioral strategies and inform the development of decision support systems. We created an online digital experiment to simulate outbreak scenarios among swine production supply chains, where participants were tasked with making biosecurity investment decisions. In Experiment One, we quantified the risk associated with each participant's decisions and delineated three dominant categories of risk attitudes: risk averse, risk tolerant, and opportunistic. Each risk class exhibited unique approaches in reaction to risk and disease information. We also tested how information uncertainty affects risk aversion, by varying the amount of visibility of the infection as well as the amount of biosecurity implemented across the system. We found evidence that more visibility in the number of infected sites increases risk averse behaviors, while more visibility in the amount of neighboring biosecurity increased risk taking behaviors. In Experiment Two, we were surprised to find no evidence for differences in behavior of livestock specialists compared to Amazon Mechanical Turk participants. Our findings provide support for using experimental gaming simulations to study how risk communication affects behavior, which can provide insights towards more effective messaging strategies.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the COVID-19 pandemic; a pandemic of a scale that has not been seen in the modern era. Despite over 29 million reported cases and over 900, 000 deaths worldwide as of September 2020, herd immunity and widespread vaccination efforts by many experts are expected to be insufficient in addressing this crisis for the foreseeable future. Thus, there is an urgent need for treatments that can lessen the effects of SARS-CoV-2 in patients who become seriously affected. Many viruses including HIV, the common cold, SARS-CoV and SARS-CoV-2 use a unique mechanism known as −1 programmed ribosomal frameshifting (−1 PRF) to successfully replicate and infect cells in the human host. SARS-CoV (the coronavirus responsible for SARS) and SARS-CoV-2 possess a unique RNA structure, a three-stemmed pseudoknot, that stimulates −1 PRF. Recent experiments identified that small molecules can be introduced as antiviral agents to bind with the pseudoknot and disrupt its stimulation of −1 PRF. If successfully developed, small molecule therapy that targets −1 PRF in SARS-CoV-2 is an excellent strategy to improve patients’ prognoses. Crucial to developing these successful therapies is modeling the structure of the SARS-CoV-2 −1 PRF pseudoknot. Following a structural alignment approach, we identify similarities in the −1 PRF pseudoknots of the novel coronavirus SARS-CoV-2, the original SARS-CoV, as well as a third coronavirus: MERS-CoV, the coronavirus responsible for Middle East Respiratory Syndrome (MERS). In addition, we provide a better understanding of the SARS-CoV-2 −1 PRF pseudoknot by comprehensively investigating the structural landscape using a hierarchical folding approach. Since understanding the impact of mutations is vital to long-term success of treatments that are based on predicted RNA functional structures, we provide insight on SARS-CoV-2 −1 PRF pseudoknot sequence mutations and their effect on the resulting structure and its function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.