ADP-ribosylation (ADPr), as a post-translational modification, plays a crucial role in DNA-repair, immunity and many other cellular and physiological processes. Serine is the main acceptor for ADPr in DNA damage response, whereas the physiological impact of less common ADPr-modifications of cysteine and threonine side chains is less clear. Generally, gaining molecular insights into ADPr recognition and turnover is hampered by the availability of homogeneous, ADPribosylated material, such as mono-ADP-ribosylated (MARy-lated) peptides. Here, a new and efficient solid-phase strategy for the synthesis of Ser-, Thr-and Cys-MARylated peptides is described. ADP-ribosylated cysteine, apart from being a native post-translational modification in its own right, proved to be suitable as a stabile bioisostere for ADP-ribosylated serine making it a useful tool to further biochemical research on serine ADP-ribosylation. In addition, it was discovered that the Streptococcus pyogenes encoded protein, SpyMacroD, acts as a Cys-(ADP-ribosyl) hydrolase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.