The 2013–2016 epidemic of Ebola virus disease was of unprecedented magnitude, duration and impact. Analysing 1610 Ebola virus genomes, representing over 5% of known cases, we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already set the seeds for an international epidemic, rendering these measures ineffective in curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing they were susceptible to significant outbreaks but at lower risk of introductions. Finally, we reveal this large epidemic to be a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help inform interventions in future epidemics.
Background The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures. Methods In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h. We established a weekly review and reporting system with integration of genomic and epidemiological data to investigate suspected health-care associated COVID-19 cases. Findings Between March 13 and April 24, 2020, we collected clinical data and samples from 5613 patients with COVID-19 from across the East of England. We sequenced 1000 samples producing 747 high-quality genomes. We combined epidemiological and genomic analysis of the 299 patients from our hospital and identified 35 clusters of identical viruses involving 159 patients. 92 (58%) of 159 patients had strong epidemiological links and 32 (20%) patients had plausible epidemiological links. These results were fed back to clinical, infection control, and hospital management teams, leading to infection-control interventions and informing patient safety reporting. Interpretation We established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and showed the benefit of combined genomic and epidemiological analysis for the investigation of health-care associated COVID-19. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection-control interventions to further reduce health-care associated infections. Our findings have important implications for national public health policy as they enable rapid tracking and investigation of infections in hospital and community settings. Funding COVID-19 Genomics UK (supported by UK Research and Innovation, the National Institute of Health Research, the Wellcome Sanger Institute), the Wellcome Trust, the Academy of Medical Sciences and the Health Foundation, and the National Institute for Health Research Cambridge Biomedical Research Centre.
75Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between 76 countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 77 3-week period (April 2020), 1,032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK 78 teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-79 time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the 80 asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly 81 asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus 82 disease 2019 (COVID-19) >7 days prior to testing, most self-isolating, returning well. Clusters of HCW 83 infection were discovered on two independent wards. Viral genome sequencing showed that the majority of 84HCWs had the dominant lineage B•1. Our data demonstrates the utility of comprehensive screening of 85HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital 86 staff. 87 88
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.