The recrystallization of b-Sn profoundly affects deformation and failure of Sn-Ag-Cu solder joints in thermomechanical fatigue (TMF) testing. The numerous grain boundaries of recrystallized b-Sn enable grain boundary sliding, which is absent in as-solidified solder joints. Fatigue cracks initiate at, and propagate along, recrystallized grain boundaries, eventually leading to intergranular fracture. The recrystallization behavior of Sn-Ag-Cu solder joints was examined in three different TMF conditions for five different ball grid array component designs. Based on the experimental observations, a TMF damage accumulation model is proposed: (1) strain-enhanced coarsening of secondary precipitates of Ag 3 Sn and Cu 6 Sn 5 starts at joint corners, eventually allowing recrystallization of the Sn grain there as well; (2) coarsening and recrystallization continue to develop into the interior of the joints, while fatigue crack growth lags behind; (3) fatigue cracks finally progress through the recrystallized region. Independent of the TMF condition, the recrystallization appeared to be essentially complete after somewhat less than 50% of the characteristic life, while it took another 50% to 75% of the lifetime for a fatigue crack to propagate through the recrystallized region.
CuantumFuse nano copper material has been used to assemble functional LED test boards and a small camera board with a 48 pad CMOS sensor quadflat no-lead chip and a 10 in flexible electronics demo. Drop-in replacement of solder, by use of stencil printing and standard surface mount technology equipment, has been demonstrated. Applications in space and commercial systems are currently under consideration. The stable copper-nanoparticle paste has been examined and characterized by scanning electron microscopy and high-resolution transmission electron microscopy; this has shown that the joints are nanocrystalline but with substantial porosity. Assessment of reliability is expected to be complicated by this and by the effects of thermal and strain-enhanced coarsening of pores. Strength, creep, and fatigue properties were measured and results are discussed with reference to our understanding of solder reliability to assess the potential of this nano-copper based solder alternative.
The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the hightemperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag 3 Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.