Geophysical signals accompanying the reactivation of a volcano after a period of quiescence must be evaluated as potential precursors to impending eruption. Here we report on the reactivation of the central volcanic complex of Tenerife, Spain, in spring 2004 and present gravity change maps constructed by time‐lapse microgravity measurements taken between May 2004 and July 2005. The gravity changes indicate that the recent reactivation after almost a century of inactivity was accompanied by a sub‐surface mass addition, yet we did not detect widespread surface deformation. We find that the causative source was evolving in space and time and infer fluid migration at depth as the most likely cause for mass increase. Our results demonstrate that, even in the absence of previous baseline data and ground deformation, microgravity measurements early in developing crises provide crucial insight into the dynamic changes beneath a volcano.
Unrest at collapse calderas is generally thought to be triggered by the arrival of new magma at shallow depth. But few unrest periods at calderas over the past decades have culminated in volcanic eruptions and the role of hydrothermal processes during unrest is drawing more and more attention. Here we report joint and simultaneous continuous multi‐parameter observations made at the restless Nisyros caldera (Greece), which reveal non‐steady short‐term oscillatory signals. The combined geodetic, gravimetric, seismic and electromagnetic records indicate that the oscillations are associated with thermohydromechanical disturbances of the hydrothermal system. The dominant period of oscillation (40–60 min) indicates short‐term processes most likely associated with instabilities in the degassing process. Amplitudes of recorded geodetic and gravimetric signals are comparable to amplitudes observed at other periodically restless calderas. We conclude that shallow aqueous fluid migration can contribute significantly to periodic unrest, explaining the lack of eruptions in many cases of unrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.