Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
The recently discovered electrical-induced switching of antiferromagnetic (AF) materials that have spatial inversion asymmetry has enriched the field of spintronics immensely and opened the door for the concept of antiferromagnetic memory devices. CuMnAs is one promising AF material that exhibits such electrical switching ability, and has been studied to switch using electrical pulses of length millisecond down to picosecond, but with little focus on nanosecond regime. We demonstrate here switching of CuMnAs/GaP using nanosecond pulses. Our results showed that in the nanosecond regime low-energy switching, high readout signal with highly reproducible behaviour down to a single pulse can be achieved. Moreover, a comparison of the two switching methods of orthogonal switching and polarity switching was performed on the same device showing distinct behavior that can be exploited selectively for different future memory/processing applications.
We describe measurements of the uniaxial magnetic anisotropy and spin-flop rotation of the Néel vector in antiferromagnetic CuMnAs thin films using neutron diffraction. The suppression of the magnetic (100) peak under magnetic fields is observed for films as thin as 20 nm, indicating that they undergo a spin-flop transition. Good agreement is found between neutron diffraction and electrical transport measurements of the spin-flop rotation in the same layer with similar shape and hysteresis of the obtained curves, while the neutron measurements provide a quantitative determination of the spin flop extending throughout the antiferromagnet layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.