The UNESCO world heritage site Valley of the Kings or Wadi el-Moluk (وادي الملوك) near Luxor, Egypt, hosts unique burial places of Egyptian kings and royals from the New Kingdom (c. 1539–1075 BCE) and attracts about 0.5 to 2 million tourists per year. Very steep to subvertical cliffs of Thebes Limestone surround the Valley of the Kings. The rock mass is cut by frequent joints and faults making the cliff walls prone to rockfalls. However, only few rockfall debris are found in the valley, likely due to natural remobilisation by flood events and artificial clearings and excavation works that rendered the natural debris cover over the millennia. This work focuses on rockfall susceptibility and runout and makes use of new high-resolution landscape surface models utilising terrestrial laser scanning. We investigated rockfall release areas by exploring rock mass fractures at 23 cliff segments and analysed the kinematics of potential rockfalls. Furthermore, we estimated potential rockfall deposition areas with CONEFALL supported by nine numerical simulations of single rockfall events using Rockyfor3D. We found that nearly 4500 m2 (26%) of the public walking paths and 24 out of 64 tomb entrance areas locate within potential rockfall runout zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.