Grafted conjugated polyelectrolytes were synthesized for the first time and characterized. The polymers demonstrated properties of a convenient and efficient protocol for creating Hg(2+) sensors. The unique character of the new material comes from an anionic counterion nature with no external cofactors, and imparts high selectivity and fast detection for mercury ion in a fluorescence probe. The concept may be potentially applied to create new sensors for monitoring other ions.
Aim: To investigate whether kaempferol exhibited protective effects on osteoarthritis chondrocytes by modulating the XIST/miR-130a/STAT3 axis. Methods: qRT-PCR and western blot assays were used for gene and protein determination. Dual luciferase reporter and RNA immunoprecipitation assays were employed to study the interaction between miRNA and lncRNA or genes. Results: Kaempferol decreased proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Additionally, kaempferol ameliorated XIST expression and enhanced miR-130a expression. XIST interacted with miR-130a, and STAT3 was identified as a target of miR-130a. Knockdown of XIST expression suppressed proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Overexpression of STAT3 rescued the effects of XIST knockdown. Conclusion: Kaempferol inhibited inflammation and extracellular matrix degradation by modulating the XIST/miR-130a/STAT3 axis in chondrocytes.
Colorectal cancer (CRC) is one of the most common malignancies, and effective treatment and prevention methods are lacking. Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber. It has been shown to be effective in inhibiting CRC, but the mechanism is not known. Methods: Human normal intestinal epithelial cell line FHT and colorectal tumor cell line HCT-116 were treated with NaB alone or in combination with different programmed cell death inhibitors. Cell activity was then assessed with MTT assays and PI staining; ferroptosis with Fe2+, glutathione (GSH), and lipid peroxidation assays; signaling pathway screening with PCR arrays; and CD44, SCL7A11, and GPX4 expression with Western blotting. A CD44-overexpressing HCT-116 cell line was constructed to determine the effect of the overexpression of CD44 on NaB-induced ferroptosis. The synergistic effect of co-treatment with NaB and Erastin was assessed by isobolographic analysis. Results: NaB induced apoptosis and ferroptosis in HCT-116 cells but only induced low-level apoptosis in FHC cells. Moreover, NaB significantly increased intracellular Fe2+ and promoted GSH depletion and lipid peroxidation in HCT-116 cells. Ferroptosis-related qPCR array analysis identified CD44/SLC7A11 as a potential effector molecular of NaB-induced ferroptosis. NaB significantly inhibited the expression of CD44 and SLC7A11 in mouse CRC tissues. A CD44 overexpressed HCT-116 cell line was used to verify that CD44/SLC7A11 was a key signaling pathway that NaB-induced GSH depletion, lipid peroxidation accumulation, and ferroptosis in HCT-116 cells. Examination of whether NaB can increase the effect of ferroptosis agents showed that NaB, in combination with Erastin, a ferroptosis inducer, further promoted HCT-116 cell death and increased changes of ferroptosis markers. Conclusions: Our results suggest that NaB induces ferroptosis in CRC cells through the CD44/SLC7A11 signaling pathway and has synergistic effects with Erastin. These results may provide new insights into CRC prevention and the combined use of NaB and ferroptosis-inducing agents.
Background: Osteoarthritis (OA) pertains to a chronic disease of degenerative joints distinguished by articular cartilage destruction, subchondral bone remodeling, osteophyte formation, and inflammatory changes. Chondrocyte apoptosis is inextricably linked to cartilage degeneration. SRY-related high-mobility-group-box 9 (SOX9) is a well-acknowledged transcription factor in the chondrogenesis. Nevertheless, the detailed function of miR-138-5p/SOX9 in OA remains to be fully clarified. Materials and Methods: qRT-PCR was performed to measure the expressions of miR-138-5p and SOX9 mRNA in OA and normal cartilage tissues and cells. Human chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to simulate the inflammatory response environment of OA. miR-138-5p mimics, miR-138-5p inhibitors, and SOX9 small interfering RNA (siRNA) were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 was conducted to determine the cell viability and transwell assay was used to monitor the migration of cells. Western blot was carried out to detect the expressions of apoptosis- related factors. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. TargetScan predicted SOX9 was a target gene of miR-138-5p, which was then verified by luciferase assay. Results: miR-138-5p expression was down-regulated in OA and regulated SOX9 expression. The downregulation of miR-138-5p facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while impeded their apoptosis and inflammatory response. Besides, down-regulated SOX9 can counteract the promoting effect of down-regulated miR-138-5p on the proliferation and migration of chondrocytes. Conclusion: miR-138-5p can arrest the proliferation and migration of CHON-001 and ATDC5 via restraining SOX9, and facilitate the apoptosis and inflammation. This study revealed the protective effect of down-regulated miR-138-5p on the inflammatory injury of chondrocytes caused by IL-1β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.