Objective Glioma is the most common intracranial primary malignancy, but its pathogenesis remains unclear. Methods We integrated four eligible glioma microarray datasets from the gene expression omnibus database using the robust rank aggregation method to identify a group of significantly differently expressed genes (DEGs) between glioma and normal samples. We used these DEGs to explore key genes closely associated with glioma survival through weighted gene co-expression network analysis. We then constructed validations of prognosis and survival analyses for the key genes via multiple databases. We also explored their potential biological functions using gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). Results We selected DLGAP5, CDCA8, NCAPH, and CCNB2, as four genes that were abnormally up-regulated in glioma samples, for verification. They showed high levels of isocitrate dehydrogenase gene mutation and tumor grades, as well as good prognostic and diagnostic value for glioma. Their methylation levels were generally lower in glioma samples. GSEA and GSVA analyses suggested the genes were closely involved with glioma proliferation. Conclusion These findings provide new insights into the pathogenesis of glioma. The hub genes have the potential to be used as diagnostic and therapeutic markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.