Abnormal aggregation of the microtubule-associated protein Tau is closely associated with tauopathies, including Alzheimer’s disease and chronic traumatic encephalopathy. The hexapeptide 275VQIINK280 (PHF6*), a fibril-nucleating core motif of Tau, has been shown to play a vital role in the aggregation of Tau. Mounting experiment evidence demonstrated the acetylation of a single-lysine residue K280 in the PHF6* was a critical event for the formation of pathological Tau amyloid deposits. However, the underlying mechanisms by which K280 acetylation affects Tau aggregation at the atomic level remain elusive. In this work, we performed replica exchange molecular dynamics simulations to investigate the influence of acetylation of K280 on the aggregation of PHF6*. Our simulations show that acetylation of K280 not only enhances the self-assembly capability of PHF6* peptides but also increases the β-sheet structure propensity of the PHF6*. The inter-molecular interactions among PHF6* peptides are strengthened by the acetylation of K280, resulting in an increased ordered β-sheet-rich conformations of the PHF6* assemblies along with a decrease of the structural diversity. The residue-pairwise contact frequency analysis shows that K280 acetylation increases the interactions among the hydrophobic chemical groups from PHF6* peptides, which promotes the aggregation of PHF6*. This study offers mechanistic insights into the effects of acetylation on the aggregation of PHF6*, which will be helpful for an in-depth understanding of the relationship between acetylation and Tau aggregation at the molecular level.
Abnormal aggregation of the microtubule-associated protein tau into intracellular fibrillary inclusions is characterized as the hallmark of tauopathies, including Alzheimer’s disease and chronic traumatic encephalopathy. The hexapeptide 306VQIVYK311 (PHF6) of R3 plays an important role in the aggregation of tau. Recent experimental studies reported that phosphorylation of residue tyrosine 310 (Y310) could decrease the propensity of PHF6 to form fibrils and inhibit tau aggregation. However, the underlying inhibitory mechanism is not well understood. In this work, we systematically investigated the influences of phosphorylation on the conformational ensembles and oligomerization dynamics of PHF6 by performing extensive all-atom molecular dynamics (MD) simulations. Our replica exchange MD simulations demonstrate that Y310 phosphorylation could effectively suppress the formation of β-structure and shift PHF6 oligomers toward coil-rich aggregates. The interaction analyses show that hydrogen bonding and hydrophobic interactions among PHF6 peptides, as well as Y310–Y310 π–π stacking and I308–Y310 CH−π interactions, are weakened by phosphorylation. Additional microsecond MD simulations show that Y310 phosphorylation could inhibit the oligomerization of PHF6 by preventing the formation of large β-sheet oligomers and multi-layer β-sheet aggregates. This study provides mechanistic insights into the phosphorylation-inhibited tau aggregation, which may be helpful for the in-depth understanding of the pathogenesis of tauopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.