It was established that para-substituted benzyl ether protecting groups affect the reactivity of glycosyl donors of the thioglycoside type with the N-iodosuccinimide/triflic acid promoter system. Having electron donating p-methoxybenzyl ether (PMB) groups increased the reactivity of the donor in comparison to having electron withdrawing p-chloro (PClB) or p-cyanobenzyl ether (PCNB) protecting groups, which decreased the reactivity of the glycosyl donor relative to the parent benzyl ether (Bn) protected glycosyl donor. These findings were used to perform the first armed-disarmed coupling between two benzylated glucosyl donors by tuning their reactivity. In addition, the present work describes a highly efficient palladium catalyzed multiple cyanation and methoxylation of p-chlorobenzyl protected thioglycosides. The results of this paper regarding both the different electron withdrawing properties of various benzyl ethers and the efficient and multiple protecting group transformations are applicable in general organic chemistry and not restricted to carbohydrate chemistry.
Neighboring group effects were investigated in gluco- and manno-configured thioglycosides under NIS/TfOH activation. Donors possessing a 2-O-benzoyl group that are capable (1,2-trans) and incapable (1,2-cis) of exerting nucleophilic push were compared with donors possessing a participatory neutral 2-O-benzyl group. By using competition experiments between sets of glycosyl donors the direct effect of neighboring group participation and the electron withdrawing effect of the 2-O-benzoyl group could be separated. The study brings insight into how the stereochemistry of the 1 and 2 position and how the nature of the aglycon (Ph or Et) have a pronounced effect on glycosyl donor reactivity.
It was established that 2-O-benzoyl-3,4,6-tri-O-benzyl protected β-SEt, β-SPh and β-SBox glucosyl donors are not superarmed when using the NIS/TfOH promoter system, but instead have a similar reactivity as their classically armed tetra-O-benzyl protected glucosyl counterparts. The β-SBox 2-O-benzoyl-3,4,6-tri-O-benzyl glucosyl donor, however, was found to be superarmed under DMTST activation. Our studies have shown that the increased reactivity of the β-SBox 2-O-benzoyl-3,4,6-tri-O-benzyl glucosyl donor with DMTST activation could be a unique case, and that the high reactivity of glucosyl donors with the 2-O-benzoyl-3,4,6-tri-O-benzyl protection pattern is not general as earlier suggested.
From a series of competition experiments, we have explored the degree to which various para-substituents (CN, Br, H, OMe, pyrrolidino) of a 2- O -benzoyl functionalized glucosyl donor of the thioglycoside type affect the rate of glycosylation under N -iodosuccinimide/triflic acid activation. As expected, electron-withdrawing groups were found to decrease the rate of glycosylation, whereas electron-donating groups resulted in the opposite outcome, underscoring the influence on the reaction rate exerted by a participating group. On this basis, a Hammett linear free-energy relationship was established ( R 2 = 0.979, ρ = 0.6), offering fundamental insight into the magnitude of anchimeric assistance in glycosylation chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.