As is well known, building integrated photovoltaic (BIPV) technology is becoming more commonly used in residential and commercial buildings. Fire assessment of photovoltaic (PV) modules as a whole is still insufficient. This work focuses on the thermal properties and combustion behavior of CIGS (copper, indium, gallium and selenium) thin-film modules. Cone calorimeter experiments were conducted at different external heat flux of 25, 30, 35, 40 and 45 kW m−2. Several parameters are discussed, including surface temperature, ignition time, heat release rate (HRR), mass loss rate, carbon monoxide (CO) and carbon dioxide (CO2) concentrations. The results show that CIGS thin-film solar modules are inflammable at intermediate or high flashover risk. A correction calculation for the gas toxicity index has been used to reduce the well-ventilation condition effect. Compared with the uncorrected calculation, peak fractional effective dose (FED) and lethal concentration for 50% of the population (LC50) are almost double. This work will help to determine a more stringent fire safety provision for PV modules.
Abstract. With the increasing frequency of fire caused by construction materials, smoke toxicity evaluation plays a key role in related fields. Numerical simulation has become a popular method to predict the toxicity of smoke. A computational study of differential diffusion effects on smoke toxicity evaluation is proposed in this study. Further, an effective Lewis number model derived from the Reynolds-averaged form of the Navier-stokes (RANS) transport equations is proposed in turbulent flames. The accuracy of the study is illustrated for a polyurethane foam fire in a 1/5 scale vertical shaft. The temperature and the concentrations of smoke composition are mainly discussed. From the comparison of the calculations with the direct numerical simulations (DNS) data it is observed that the temperature and mass fractions of species agree well with the DNS data when differential diffusion effects are taken into account. On the other hand, these numerical results are overestimated if differential diffusion effects are neglected. The FED values indicate that differential diffusion has a strong influence on smoke toxicity evaluation when using N-Gas model.
With the increasing frequency of fire caused by construction materials, smoke toxicity evaluation plays a key role in related fields. Numerical simulation has become a popular method to predict the toxicity of smoke. A computational study of differential diffusion effects on smoke toxicity evaluation is proposed in this study. The accuracy of the study is illustrated for a polyurethane foam fire in a 1/5 scale vertical shaft. The temperature and the concentrations of smoke composition are mainly discussed. From the comparison of the calculations with the Direct Numerical Simulations (DNS) data it is observed that the temperature and mass fractions of species agree well with the DNS data when differential diffusion effects are taken into account. On the other hand, these numerical results are overestimated if differential diffusion effects are neglected. The FED values indicate that differential diffusion has a strong influence on smoke toxicity evaluation when using N-Gas model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.