Respiratory virus infection results in considerable pulmonary immunopathology, a component of which results from the host immune responses. We have developed a murine model to specifically examine the lung injury due to CD8+ T cell recognition of an influenza hemagglutinin (HA) transgene on lung epithelium in the absence of replicating virus, after adoptive transfer. Lung injury is largely mediated by chemokines expressed by the epithelial cells upon T cell recognition mediated by TNF-α. To determine the critical source of TNF-α, HA-specific TNF−/− CD8+ T cells were transferred into HA transgenic animals, and lung injury was not observed, though these T cells exhibited no defect in antiviral activity in vivo. This indicates that the initiating event in the injury process is Ag-specific expression of TNF-α by antiviral CD8+ T cells upon recognition of alveolar epithelial Ag, and that the effector activities responsible for viral clearance may be dissociable from those resulting in immunopathology.
Respiratory virus infection evokes a potent T-cell response that may result in a considerable insult to the structural and functional integrity of the gas exchange units of the lung. Alveolar antigen recognition by CD8+ T lymphocytes results in significant injury that is critically dependent upon tumor necrosis factor (TNF)-alpha expressed by the CD8+ T cells and is largely dependent upon TNF-receptor 1 expression on the alveolar epithelial target cells. TNF-receptor 2 (TNF-R2)-deficient mice were used to demonstrate that CD8+ T-cell-mediated lung injury associated with clearance of experimental influenza requires TNF-R2 for full expression of immunopathology. In vitro analysis indicates that alveolar cell expression of TNF-R2 is critical in the induction of epithelial monocyte chemoattractant protein (MCP)-1 expression specifically in response to soluble TNF-alpha, suggesting an important role for this receptor in bystander lung injury. However, TNF-R2 was dispensable for induction of alveolar MCP-1 expression in response to transmembrane TNF-alpha expressed by antigen-specific CD8+ T cells, and the effects of the two receptors seem to be additive. Because TNF-R2 may be rapidly shed as part of feedback inhibition of bystander inflammation, this suggests a mechanism by which immunopathology in respiratory virus infection may be regulated and by which T-cell receptor-dependent TNF-alpha activity might bypass such negative regulation for contact-dependent antiviral activities.
CD8+ T cell recognition of viral antigens presented by lung epithelial cells is important in the clearance of respiratory viral infection but may cause considerable injury to the lung. We have shown that a critical event of this type of injury is the activation of target epithelial cells and expression of chemokines by these cells. In this study, epithelial gene expression and transcription factor activation triggered by specific CD8+ T cell antigen recognition was examined in vitro and in vivo. T cell recognition triggers expression profiles of tumor necrosis factor-alpha (TNF-alpha)-dependent and interferon-gamma (IFN-gamma)-dependent genes in epithelial target cells. Consistent with these profiles, transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) were activated in lung epithelial cells of wild-type (WT) mice but not TNF receptor 1 (TNFR1)-deficient mice after CD8+ T cell recognition in vivo. In contrast, Stat1 activation and Stat1-dependent genes, such as IFN regulatory factor-1 (IRF-1) and guanylate-binding protein-2 (GBP-2), were induced to a similar extent in epithelial cells of both WT and TNFR1-deficient mice, indicating that this pathway is insufficient to induce pulmonary immunopathology in the absence of NF-kappaB-dependent transcriptional activation. Antibody neutralization of TNF-alpha abrogated epithelial monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) production in vitro as well as pulmonary immunopathology in vivo, confirming the primary importance of this cytokine in CD8+ T cell-mediated immunopathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.