Background The purpose of this in vitro study was to evaluate the effect of the percentages of preserved enamel on ceramic laminate veneers’ (CLVs) shear bond strength (SBS). Methods Seventy extracted human maxillary central incisors were scanned and reconstructed into three-dimensional models. The extracted teeth were then embedded and randomly divided into seven groups (n = 10 per group). Based on digital analyses of the three-dimensional models, guided tooth preparation and bonding procedures were performed individually to form seven different percentages (100%, 80%, 60% 50%, 40%, 20% and 0%) of remaining enamel thickness on the bonding surface. Finally, the SBS test was performed, and the data were statistically analysed by one-way ANOVA with LSD post hoc test (α = 0.05). Results The complete enamel surface exhibited the highest SBS (19.93 ± 4.55 MPa), followed by 80% enamel (19.03 ± 3.66 MPa), 60% enamel (18.44 ± 3.65 MPa), 50% enamel (18.18 ± 3.41 MPa), 40% enamel (17.83 ± 3.01 MPa) and 20% enamel (11.32 ± 3.42 MPa) group. The lowest SBS (9.63 ± 3.46 MPa) was detected in 0% enamel group. No significant difference was observed among the 40–100% enamel groups, while the 20% or 0% enamel group demonstrated a significantly lower mean SBS than the 40% enamel group (p < 0.05). Conclusion The SBS value of CLVs bonded to 100% enamel on the finishing surfaces (nearly 20 MPa) was twice that which bonded to 0% enamel (nearly 10 MPa). Bonding to 100% enamel is the most reliable treatment. When dentin exposure is inevitable, enamel should be preserved as much as possible to maintain good bonding. In addition, 40% of preserved enamel on the bonding surface was the minimal acceptable value to fulfil the requirements of good bonding strength.
SUMMARY Objective: This in vitro study aimed to evaluate the preservation of enamel after tooth preparation for porcelain laminate veneers (PLVs) at different preparation depths based on a fully digital workflow. Methods and Materials: Sixty extracted human maxillary anterior teeth, including 20 maxillary central incisors (MCIs), 20 maxillary lateral incisors (MLIs), and 20 maxillary canines (MCs) underwent microcomputed tomography (CT) scanning, and were reconstructed as three-dimensional (3D) enamel and dentin models. Subsequently, the three-dimensional (3D) enamel models were imported into Materialise, where each enamel model underwent seven types of virtual preparation for PLVs at preparation depths at 0.1-mm increments from 0.1-0.3-0.5 mm (D1) to 0.7-0.9-1.1 mm (D7). The enamel surface was depicted by merging the virtual preparation and, respective, dentin models. The enamel area and prepared surface were measured to calculate the percentage of enamel (R%). The data were statistically analyzed using one-way analysis of variance (ANOVA) (α=0.05). Results: The group-wise mean (standard deviation) R values for the MCIs were as follows: D1-D3: 100.00 (0) each, and D4-D7: 74.70 (2.45), 51.40 (5.12), 24.40 (3.06), and 0.00 (0), respectively. The group-wise mean R values for the MLIs were 100.00 (0), 73.70 (3.40), 53.50 (3.44), 25.20 (3.79), and 0.90 (0.99) for the D1-D5 groups, respectively; and 0.00 (0) each for the D6-D7 groups. The group-wise mean (standard deviations) R values for the MCs were as follows: D1-D3: 100.00 (0) each, and D4-D7: 99.00 (1.34), 77.10 (3.28), 74.20 (3.61), and 52.20 (4.09), respectively. The one-way ANOVA revealed significant differences between the seven groups in the MCIs, MLIs, and MCs (p<0.05). Conclusions: Our results recommended preparation depths of up to 0.3-0.5-0.7 mm (MCIs), 0.1-0.3-0.5 mm (MLIs), and 0.4-0.6-0.8 mm (MCs) to facilitate complete intraenamel preparation. Moreover, 50% enamel was preserved at preparation depths of 0.5-0.7-0.9 mm (MCIs), 0.3-0.5-0.7 mm (MLIs), and 0.7-0.9-1.1 mm (MCs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.