In this paper, we obtain the central limit theorems for LS estimator in simple linear errors-in-variables (EV) regression models under some mild conditions. And we also show that those conditions are necessary in some sense.
We introduce the error-sum function of Lüroth series. Some elementary properties of this function are studied. We also determine the Hausdorff dimension of the graph of this function.
For x ∈ I, let [A1(x), A2(x), …] be the continued fraction expansions over the field of Laurent series, write Ln(x) ≔ max { deg A1(x), deg A2(x), …, deg An(x)}, which is called the largest degree of partial quotients. In this paper, we give an iterated logarithm type theorem for Ln(x), and by which, we get that for P-almost all x ∈ I, [Formula: see text]. Also the Hausdorff dimensions of the related exceptional sets are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.