Abstract-In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
Abstract. In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. The model is a combination between more classical active contour models using mean curvature motion techniques, and the Mumford-Shah model for segmentation. We minimize an energy which can be seen as a particular case of the so-called minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable.
An algorithm for the simultaneous filling-in of texture and structure in regions of missing image information is presented in this paper. The basic idea is to first decompose the image into the sum of two functions with different basic characteristics, and then reconstruct each one of these functions separately with structure and texture filling-in algorithms. The first function used in the decomposition is of bounded variation, representing the underlying image structure, while the second function captures the texture and possible noise. The region of missing information in the bounded variation image is reconstructed using image inpainting algorithms, while the same region in the texture image is filled-in with texture synthesis techniques. The original image is then reconstructed adding back these two sub-images. The novel contribution of this paper is then in the combination of these three previously developed components, image decomposition with inpainting and texture synthesis, which permits the simultaneous use of filling-in algorithms that are suited for different image characteristics. Examples on real images show the advantages of this proposed approach.
In this paper, we propose an active contour algorithm for object detection in vectorvalued images (such as RGB or multispectral). The model is an extension of the scalar Chan-Vese algorithm to the vector-valued case [1]. The model minimizes a Mumford-Shah functional over the length of the contour, plus the sum of the fitting error over each component of the vector-valued image. Like the Chan-Vese model, our vector-valued model can detect edges both with or without gradient. We show examples where our model detects vector-valued objects which are undetectable in any scalar representation. For instance, objects with different missing parts in different channels are completely detected (such as occlusion). Also, in color images, objects which are invisible in each channel or in intensity can be detected by our algorithm. Finally, the model is robust with respect to noise, requiring no a priori denoising step. C 2000 Academic Press
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.