Majorana fermion (MF) whose antiparticle is itself has been predicted in condensed matter systems. Signatures of the MFs have been reported as zero energy modes in various systems. More definitive evidences associated with MF's novel properties are highly desired to verify the existence of the MF. Very recently, theory has predicted MFs to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MFs. Here we report the first observation of the SSAR from MFs inside vortices in Bi 2 Te 3 /NbSe 2 hetero-structure, in which topological superconductivity was previously established. By using spin-polarized scanning tunneling
The recently discovered superconductivity in Nd1−xSrxNiO2 provides a new opportunity for studying strongly correlated unconventional superconductivity. The single-hole Ni + (3d 9 ) configuration in the parent compound NdNiO2 is similar to that of Cu 2+ in cuprates. We suggest that after doping, the intra-orbital spin-singlet and inter-orbital spin-triplet double-hole (doublon) configurations of Ni 2+ are competing, and we construct a two-band Hubbard model by including both the 3d x 2 −y 2 and 3dxy-orbitals. The effective spin-orbital super-exchange model in the undoped case is a variant of the SU (4) Kugel-Khomskii model augmented by symmetry breaking terms. Upon doping, the effective exchange interactions between spin-1 2 single-holes, spin-1 (triplet) doublons, and singlet doublons are derived. Possible superconducting pairing symmetries are classified in accordance to the D 4h crystalline symmetry, and their connections to the superexchange interactions are analyzed.
Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope (STM) experiment 1 has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core, which may be attributed to the spin selective Andreev reflection, a novel property of the MZMs theoretically predicted in 1-dimensional nanowire.2 Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire 2 . The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We also discuss the finite size effect, for which the MZM at the north pole is hybridized with the MZM at the south pole. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments.
We report magneto-transport studies of InAs/GaSb bilayer quantum wells in a regime where the interlayer tunneling between the electron and hole gases is suppressed. When the chemical potential is tuned close to the charge neutrality point, we observe anomalous quantum oscillations that are inversely periodic in magnetic field and that have an extremely high frequency despite the highly insulating regime where they are observed. The seemingly contradictory coexistence of a high sheet resistance and high frequency quantum oscillations in the charge neutrality regime cannot be understood within the single-particle picture. We propose an interpretation that attributes our experimental observation to the Coulomb drag between the electron and hole gases, thus providing strong evidence of the significance of Coulomb interaction in this topological insulator. arXiv:1812.05238v1 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.