A highly sensitive electrode for sensing glucose has been fabricated by electropolymerization of 2-amino-5-mercapto-1,3,4-thiadiazole on a solid carbon paste substrate, and subsequent electrodeposition of multi-layer stacked copper particles as an outer surface. The individual copper particles are characterized by a large number of edges and corners of crystallites. Their preferred orientation {111} is parallel to the electrode surface. The conductive polymer interlayer results in an increase of the particle nucleation density and a further decrease of the polarization overpotential for direct (enzyme-free) oxidation of glucose in 0.1 M NaOH solution. A well-shaped voltammetric peak can be observed at around 0.3-0.5 V (vs. SCE, depending on scan rate) that is due to glucose oxidation. This potential is much lower than the one required for Cu(III) formation. A bulk electrolysis experiment using a thin-layer electrochemical cell confirmed the assumption that that glucose undergoes 2-electron oxidation. The mechanism of glucose oxidation in the absence of Cu(III) is discussed. The electrode exhibits a very high sensitivity (slope) of 3.31 mA cm −2 mM −1 , and the detection limit is 2 μM (at an SNR of 3). Features of the new sensor include the ease of fabrication, its high stability and good selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.