Purpose of Review We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. Recent Findings This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Summary Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Objectives: We have previously shown that the combined consumption of fat and a sucrose solution induces overeating, and there is evidence indicating that sucrose drinking directly stimulates fat intake. One neurochemical pathway by which sucrose may enhance fat intake is through the release of endogenous opioids in the nucleus accumbens (NAC). Methods: To test this hypothesis, we provided rats with a free-choice high-fat diet for two weeks. During the second week, rats had access to an additional bottle of water or a 30% sucrose solution for five minutes per day. After these two weeks, we infused vehicle or the μ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAC 30 min after their daily access to the additional bottle of water or the sucrose solution. Results: Sucrose drinking had two effects, (1) it stimulated fat intake in the absence of DAMGO infusion, (2) it diminished sensitivity to DAMGO, as it prevented the rapid increase in fat intake typically seen upon DAMGO infusion in the nucleus accumbens. In a second experiment, we confirmed that these results are not due to the ingested calories of the sucrose solution. Lastly, we investigated which brain areas are involved in the observed effects on fat intake by assessing c-Fos-expression in brain areas previously linked to DAMGO's effects on food intake. Both intra-NAC DAMGO infusion and sucrose consumption in the absence of DAMGO infusion had no effect on c-Fos-expression in orexin neurons and the central amygdala but increased c-Fos-expression in the NAC as well as the basolateral amygdala. Discussion: In conclusion, we confirm that sucrose drinking stimulates fat intake, likely through the release of endogenous opioids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.