The water buffalo (Bubalus bubalis) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, which affects animal digestibility. Therefore, the present study aims to investigate the functional relation between three lignin monomeric compositions of coniferyl alcohol (G), ρ-coumaryl alcohol (H) and sinapyl alcohol (S) and ruminal fiber degradation in water buffalo. Hence, three female water buffaloes (Nili-Ravi × Mediterranean, five years old, 480 ± 20 kg) were assigned for an in vivo study by utilizing the nylon-bag method, examining eight kinds of roughage. All the experimental roughage types were analyzed for the effective degradability (ED) of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL) and hemicellulose (HC) fractions. Then, prediction models for the roughage fiber degradation were established based on the characteristics of lignin monomer content. The results showed that S, S/G and S/(G+S+H) were positively correlated with the ED of NDF, ADF, CEL and HC; H/S was negatively correlated. For the effective degradability of ADL (ADLD), S and S/(G+S+H) were positively correlated with it; H, H/G, H/S and H/(G+S+H) were negatively correlated. The model with the highest fitting degree was ADLD = 0.161 − 1.918 × H + 3.152 × S (R2 = 0.758, p < 0.01). These results indicated that the lignin monomer composition is closely related to the utilization rate of roughage fiber. S-type lignin monomer plays a vital role in the fiber degradation of roughage. The experiment found the effect of lignin monomer composition on the degradation of fiber fractions using buffalo as the experimental animal and constructed prediction models, providing a scientific basis for building a new technological method using lignin composition to evaluate buffalo roughage. Furthermore, the capacity of ADL degradation of buffalo was proved in this experiment. In order to further explore the ability of lignin degradation by the buffalo, the DNA of rumen microorganisms was extracted for sequencing. The top three composition of rumen microorganisms at the genus level were Prevotella_1, 226, Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-011. Six strains with lignin degradation ability were screened from buffalo rumen contents. This experiment also revealed that the buffalos possess rumen microorganisms with lignin degradation potential.
The purpose of this study was to isolate lignin‐degrading bacteria from buffalo rumen and to explore their interactions further. Using lignin as the carbon source, three bacteria, B‐04 (Ochrobactrum pseudintermedium), B‐11 (Klebsiella pneumoniae), and B‐45 (Bacillus sonorensis), which have shown lignin degradation potential, were successfully isolated and identified from the rumen fluid of buffalo by colony morphology, 16S ribosomal RNA gene sequencing, and biochemical and physiological analyses. The degradation rates of lignin were determined, and the maximum values were 4.86%, 11.1%, and 7.68% for B‐04, B‐11, and B‐45, respectively. The maximum laccase activities were 0.65, 0.93, and 1.15 U/ml, while the maximum lignin peroxidase activities were 5.72, 8.29, and 18.69 U/ml, respectively. Pairwise interaction studies showed inhibitory interaction between B‐04 and B‐45, inhibitory interaction between B‐04 and B‐11, and symbiotic interaction between B‐11 and B‐45. This is the first report on the lignin degradation ability of bacteria isolated from the buffalo's rumen, which provides a new understanding for revealing the mechanism of roughage tolerance of buffalo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.